首页> 美国政府科技报告 >Maximum-Likelihood Parameter Estimation of a Generalized Gumbel Distribution
【24h】

Maximum-Likelihood Parameter Estimation of a Generalized Gumbel Distribution

机译:广义Gumbel分布的极大似然参数估计

获取原文

摘要

A microcomputer-based algorithm for estimation of the three parameters of a generalized Gumbel (extreme value type I) distribution class is presented. The parameters are shift, scale, and shape. The classical Gumbel distribution results if the shape parameter is equal to unity. Three-parameter as well as two-parameter (shape equal to unity) estimation can be performed for given histogram data. Parameter estimation is accomplished by means of the maximum-likelihood principle. The derivative equations which result from the associated logarithmic likelihood function are used. A more comprehensive presentation of generalized Gumbel distribution estimation which also allows treatment of population data and which includes moment estimates and maximum-likelihood estimates by direct optimization of the logarithmic likelihood function will be presented elsewhere. (Author).

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号