首页> 外文期刊>Journal of statistical computation and simulation >Estimation of the generalized process capability index C_(pyk) based on bias-corrected maximum-likelihood estimators for the generalized inverse Lindley distribution and bootstrap confidence intervals
【24h】

Estimation of the generalized process capability index C_(pyk) based on bias-corrected maximum-likelihood estimators for the generalized inverse Lindley distribution and bootstrap confidence intervals

机译:基于偏转逆林德利分布和引导置信区间的偏置校正的最大似然估计,估计广义过程能力指数C_(PYK)的估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we are interested in estimating the generalized process capability index (C-pyk) proposed by Maiti et al. [On generalizing process capability indices. Qual Technol Quant Manag. 2010;7(3):279-300], when the underlying distribution is the generalized inverse Lindley (GIL) distribution. We estimate parameters of the GIL distribution using maximum likelihood (ML), bias-corrected maximum-likelihood (BCML) and bootstrap bias-corrected maximum-likelihood (BBCML) methodologies. Cpyk are obtained using proposed estimators. Bootstrap confidence intervals called standard bootstrap (SB), percentile bootstrap (PB) and bias-corrected percentile bootstrap (BCPB) 95% are constructed based on the estimators of C-pyk. We compare efficiencies of the parameter estimators and the performance of ML, BCML and BBCML based Cpyk via an extensive Monte Carlo simulation study. A simulation study is also described to compare the coverage probabilities (CP) and average lengths (AL) of SB, PB and BCPB confidence intervals for proposed C-pyk. Finally, two real datasets are analysed for illustrative purposes.
机译:在本文中,我们有兴趣估计Maiti等人提出的广义流程能力指数(C-PYK)。 [概括过程能力指标。 Qual Technol量子管理。 2010; 7(3):279-300],当潜在的逆林德利(GIL)分布时。我们使用最大似然(ml),偏置校正的最大可能性(BCML)和引导偏置最大可能性(BBCML)方法来估计GIL分布的参数。使用所提出的估算者获得CPYK。引导置信区间称为标准引导(SB),百分位引导(PB)和偏置校正百分位引导(BCPB)95%基于C-Pyk的估计来构建。我们通过广泛的Monte Carlo仿真研究比较参数估算器的效率以及基于ML,BCML和BBCML的CPYK的性能。还描述了一种模拟研究来比较SB,PB和BCPB置信区间的覆盖概率(CP)和平均长度(Al),用于提出的C-PYK。最后,分析了两个真实数据集以用于说明目的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号