首页> 美国政府科技报告 >Aspects of Full-Custom VLSI Microprocessor Design and Implementation
【24h】

Aspects of Full-Custom VLSI Microprocessor Design and Implementation

机译:全定制VLsI微处理器设计和实现方面

获取原文

摘要

There is a broad spectrum of design styles that have proven successful for the construction of VLSI circuits and systems. Semi-custom to full-custom design styles offer a wide range of resulting performance, expected turn-around time, and required design effort. Implementation alternatives, such as replacing dynamic memory for static memory to implement a denser on-chip memory, also exist at all levels of design hierarchy. To make the best use of scarce resources on a single chip microprocessor and to make the emerging CAD tools truly useful, alternatives in the implementation of a microprocessor must be carefully evaluated. The research reported in this thesis focuses on issues concerning these alternatives, especially in the areas of on-chip memory design and automated control logic design. The methodologies and techniques used to maximize the performance of a full-custom VLSI microprocessor, called the SPUR CPU, is initially presented to provide an overview of microprocessor design strategies. The rest of the research presented is transpired from new ideas and better alternatives which have become available since the SPUR CPU. These are based on lessons learned in the SPUR design and advanced computer-aided design tools such as multi-level logic synthesis system. A rigorous evaluation of these alternatives is attempted and results from the evaluation establish the effectiveness of the alternatives considered. To increase the area efficiency of the on-chip memory, two memory design techniques are proposed and evaluated. Selective invalidation instead of refreshing, implemented using low overhead dynamic CMOS circuits, can effectively eliminate the refreshing requirement of dynamic memory. With this scheme, the size of an on-chip local memory can be substantially increased without increasing the scarce silicon area. Trace-driven simulations show the effectiveness of this scheme over a simple invalidation scheme.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号