首页> 美国政府科技报告 >Iterative Methods for Parameter Estimation
【24h】

Iterative Methods for Parameter Estimation

机译:参数估计的迭代方法

获取原文

摘要

Starting with a least squares formulation of the parameter estimation problem,both fixed data and data-adaptive iterative algorithms are developed. We apply two new techniques, namely diagonal perturbation and multiple partitioning, to existing finite impulse response (FIR) and infinite impulse response (IIR) fixed data matrix splitting algorithms, resulting in improved performance. Also, we extend the fixed data algorithms to the data-adaptive case, and contrast them with FIR and IIR recursive least squares (RLS) algorithms. Computer simulations are used to evaluate the computational effectiveness of the new algorithms. We show the general rate of convergence for the algorithms, evaluate their ability to correctly represent the spectral components of simulated system frequency response in noise, and present system performance, when the order of the model is chosen to be larger than the known system order (over-modeling).

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号