首页> 美国政府科技报告 >Influence of Temperature and Composition on the Activation Energy for Creep inBinary Aluminum Lithium Alloys
【24h】

Influence of Temperature and Composition on the Activation Energy for Creep inBinary Aluminum Lithium Alloys

机译:温度和组成对二元铝锂合金蠕变活化能的影响

获取原文

摘要

With the fast pace of technology in the aerospace industry, there are increasingdemands for higher strength and stiffness in structural materials but with reduced weight and improved formability. Aluminum alloys have been widely used in the construction of aerospace vehicles because of their high strength to weight ratio, forming characteristics and corrosion resistance. An investigation was conducted to determine the temperature and composition dependence on the activation energy for creep of A1-0.5wt.pct.lithium, A1-1.Owt.pct.Li, and A1-2.Owt.pc+.Li alloys. A series of isothermal tests were conducted utilizing constant true stress creep tests, with nominal temperatures ranging from 300 C to 500 C. Temperature cycling tests involved a range of 10 C for each test. Experimental results indicate all three alloys behave as a class II alloy (pure metal class) with a stress exponent, n, approximately equal to 5. In addition, subgrain formation was observed in association with the primary stage of creep. The activation energy for creep of the A1-0.5wt.pct.Li and A1-1.Owt.pct.Li alloys was observed to b essentially the same as that for pure Aluminum.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号