首页> 美国政府科技报告 >Fast State-Space Methods for Inferring Dendritic Synaptic Connectivity
【24h】

Fast State-Space Methods for Inferring Dendritic Synaptic Connectivity

机译:推导树突突触连接的快速状态空间方法

获取原文

摘要

We present fast methods for filtering voltage measurements and performing optimal inference of the location and strength of synaptic connections in large dendritic trees. Given noisy, subsampled voltage observations we develop fast l1-penalized regression methods for Kalman state- space models of the neuron voltage dynamics. The value of the l1-penalty parameter is chosen using crossvalidation or, for low signal-to-noise ratio, a Mallows' Cp-like criterion. Using low-rank approximations, we reduce the inference runtime from cubic to linear in the number of dendritic compartments. We also present an alternative, fully Bayesian approach to the inference problem using a spike-and slab prior. We illustrate our results with simulations on toy and real neuronal geometries. We consider observation schemes that either scan the dendritic geometry uniformly or measure linear combinations of voltages across several locations with random coefficients. For the latter, we show how to choose the coefficients to offset the correlation between successive measurements imposed by the neuron dynamics. This results in a 'compressed sensing' observation scheme, with an important reduction in the number of measurements required to infer the synaptic weights.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号