首页> 美国政府科技报告 >Reduced-Order Modeling of Unsteady Aerodynamics Across Multiple Mach Regimes
【24h】

Reduced-Order Modeling of Unsteady Aerodynamics Across Multiple Mach Regimes

机译:多个马赫状态下非定常气动的降阶建模

获取原文

摘要

The accurate prediction of unsteady aerodynamic loads is of utmost importance in an aeroelastic simulation framework. Inaccurate prediction of these loads may result in inaccurate control design and evaluation, which, in a worst-case scenario, could cause loss of control of the vehicle. In addition to accuracy, these simulations require that the aerodynamic calculations be computationally efficient, so this often eliminates the use of full-order computational fluid dynamics (CFD) simulations, which can be quite computationally-intensive. Reduced-order models (ROMs) offer a solution to these competing demands of accuracy and efficiency by extracting pertinent data from a limited number of full-order CFD simulations and using that data to construct computationally-efficient models that retain a high amount of the accuracy of the full-order solution while running orders of magnitude faster computationally. This dissertation focuses on the development of a reduced- order modeling methodology for unsteady aerodynamics based on linear convolution combined with a nonlinear correction factor. Rather than being limited to a specific Mach regime, the ROM formulation is general enough such that it can be applied over a wide range of Mach regimes, from subsonic to hypersonic flight. The correction factor term allows the ROM to be accurate over a range of vehicle elastic modal deformation amplitudes as well as flight conditions representing of-design conditions. This generality is important because it permits a single form of the equations for aerodynamic loads to be used throughout all simulations in a controls framework, further increasing the efficiency. The evaluation of the ROM is accomplished through the comparison of ROM results with full-order CFD simulations for test-case geometries in the subsonic, transonic and super/hypersonic regimes.

著录项

  • 作者

    Skujins, T;

  • 作者单位
  • 年度 2013
  • 页码 1-187
  • 总页数 187
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工业技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号