首页> 外文学位 >Reduced-order modeling of fluids systems, with applications in unsteady aerodynamics.
【24h】

Reduced-order modeling of fluids systems, with applications in unsteady aerodynamics.

机译:流体系统的降阶建模及其在不稳定空气动力学中的应用。

获取原文
获取原文并翻译 | 示例

摘要

This thesis focuses on two major themes: modeling and understanding the dynamics of rapidly pitching airfoils, and developing methods that can be used to extract models and pertinent features from datasets obtained in the study of these and other systems in fluid mechanics and aerodynamics. Much of the work utilizes in some capacity dynamic mode decomposition (DMD), a recently developed method to extract dynamical features and models from data.;The investigation of pitching airfoils includes both wind tunnel experiments and direct numerical simulations. Experiments are performed on a NACA 0012 airfoil undergoing rapid pitching motion, with the focus on developing a switched linear modeling framework that can accurately predict unsteady aerodynamic forces and pressure distributions throughout arbitrary pitching motions.;Numerical simulations are used to study the behavior of sinusoidally pitching airfoils. By systematically varying the amplitude, frequency, mean angle and axis of pitching, a comprehensive database of results is acquired, from which interesting regions in parameter space are identified and studied. Attention is given to pitching at "preferred" frequencies, where vortex shedding in the wake is excited or amplified, leading to larger lift forces.;More generally, the ability to extract nonlinear models that describe the behavior of complex fluids systems can assist in not only understanding the dominant features of such systems, but also to achieve accurate prediction and control. One potential avenue to achieve this objective is through numerical approximation of the Koopman operator, an infinite-dimensional linear operator capable of describing finite-dimensional nonlinear systems, such as those that might describe the dominant dynamics of fluids systems. This idea is explored by showing that algorithms designed to approximate the Koopman operator can indeed be utilized to accurately model nonlinear fluids systems, even when the data available is limited or noisy.;Data-driven algorithms can be adversely affected by noisy data. Focusing on DMD, it is shown analytically that the algorithm is biased to sensor noise, which explains a previously observed sensitivity to noisy data. Using this finding, a number of modifications to DMD are proposed, which all give better approximations of the true dynamics using noise-corrupted data.
机译:本文着重于两个主要主题:对快速俯仰型机翼的动力学建模和理解,以及开发可用于从对流体力学和空气动力学系统进行研究的数据集中提取模型和相关特征的方法。许多工作在某些能力动态模式分解(DMD)中利用了最新开发的从数据中提取动态特征和模型的方法。俯仰翼型的研究包括风洞实验和直接数值模拟。在经历快速俯仰运动的NACA 0012机翼上进行了实验,重点是开发了可切换线性建模框架,该框架可以准确预测整个任意俯仰运动中的非稳定气动力和压力分布。;数值模拟用于研究正弦俯仰的行为机翼。通过系统地改变振幅,频率,平均角度和俯仰轴,可以获得一个综合的结果数据库,从中可以识别和研究参数空间中有趣的区域。应注意以“首选”频率进行俯仰,在激振中激流中的涡旋脱落被激发或放大,从而导致更大的升力。;更一般而言,提取描述复杂流体系统行为的非线性模型的能力有助于避免既了解此类系统的主要特征,又能实现准确的预测和控制。实现这一目标的一种潜在途径是通过Koopman算子的数值逼近,该算子是无穷维的线性算子,能够描述有限维的非线性系统,例如那些可能描述流体系统主要动力学的系统。通过表明设计近似Koopman算子的算法确实可以用来对非线性流体系统进行精确建模,即使在可用数据有限或嘈杂的情况下,也可以探索这种想法。数据驱动算法可能会受到嘈杂数据的不利影响。专注于DMD,分析表明该算法偏向传感器噪声,这解释了以前观察到的对噪声数据的敏感性。利用这一发现,提出了对DMD的许多修改,它们均使用受噪声破坏的数据为真实动态提供了更好的近似值。

著录项

  • 作者

    Dawson, Scott T. M.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Mechanical engineering.;Aerospace engineering.;Applied mathematics.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 184 p.
  • 总页数 184
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号