首页> 美国政府科技报告 >Integral Method for Mixing, Chemical Reactions, and Extinction in UnsteadyStrained Diffusion Layers
【24h】

Integral Method for Mixing, Chemical Reactions, and Extinction in UnsteadyStrained Diffusion Layers

机译:非定常拉伸扩散层中混合,化学反应和消光的积分方法

获取原文

摘要

An integral method is presented for determining the evolution of molecularmixing, finite rate chemical reactions, and local extinction in diffusion layers under the effect of an unsteady strain rate. The partial differential equations governing the reactant, product, and temperature profiles are used to derive ordinary differential equations governing the evolution of moments for the product and temperature profiles and for the reactant gradient profiles. The actual profiles enter these equations only through integral moments resulting from the reaction rate terms (referred to as reaction integrals). As a consequence, it is possible to accurately track the evolution of the profile moments, and thereby determine global properties of the layer such as burning rates and extinction conditions, using remarkably simple representations for the actual profiles to evaluate the reaction integrals. Here these profile shapes are specified as self-similar families of curves parameterized by just a few degrees of freedom, which then evolve from the moment equations. Results for combustion in isolated strained diffusion layers, as well as for consumption of a burning fuel strip, are generally within a few percent of the results from finite difference solutions of the full equations.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号