首页> 美国政府科技报告 >Using a Bayesian Model to Combine LDA Features with Crowdsourced Responses.
【24h】

Using a Bayesian Model to Combine LDA Features with Crowdsourced Responses.

机译:使用贝叶斯模型将LDa特征与众包响应相结合。

获取原文

摘要

This paper describes a crowdsourcing system that integrates machine learning techniques with human classifiers, showing how to apply a Bayesian approach to classifier combination to the challenge of crowdsourcing document topic labels. First, we use a number of NLP techniques to extract informative document features. We then screen and select workers using Amazon Mechanical Turk to label selected documents. We then apply Independent Bayesian Classifier Combination (IBCC) to classify the complete set of documents in a semi- supervised manner, taking into account the unreliability of crowd-sourced labels. More documents are then selected intelligently for labeling by the crowd. We demonstrate superior results using IBCC compared to a two-stage classifier and strong performance with only 16% documents labelled by the crowd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号