首页> 美国政府科技报告 >Large-Scale Exploratory Analysis, Cleaning, and Modeling for Event Detection in Real-World Power Systems Data.
【24h】

Large-Scale Exploratory Analysis, Cleaning, and Modeling for Event Detection in Real-World Power Systems Data.

机译:用于实际电力系统数据中事件检测的大规模探索性分析,清理和建模。

获取原文

摘要

In this paper, we present an approach to large-scale data analysis, Divide and Recombine (D&R), and describe a hardware and software implementation that supports this approach. We then illustrate the use of D&R on large-scale power systems sensor data to perform initial exploration discover multiple data integrity issues, build and validate algorithms to filter bad data, and construct statistical event detection algorithms. This paper also reports on experiences using a non-traditional Hadoop distributed computing setup on top of a HPC computing cluster.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号