首页> 美国政府科技报告 >Line Iterative Methods for Cyclically Reduced Discrete Convection-DiffusionProblems
【24h】

Line Iterative Methods for Cyclically Reduced Discrete Convection-DiffusionProblems

机译:循环减少离散对流扩散问题的线迭代方法

获取原文

摘要

An analytic and empirical study of line iterative methods for solving thediscrete convection-diffusion equation is performed. The methodology consists of performing one step of the cyclic reduction method, followed by iteration on the resulting reduced system using line orderings of the reduced grid. Two classes of iterative methods are considered: block stationary methods, such as the block Gauss-Seidel and SOR methods, and preconditioned generalized minimum residual methods with incomplete LU preconditioners. New analysis extends convergence bounds for constant coefficient problems to problems with separable variable coefficients. In addition, analytic results show that iterative methods based on incomplete LU preconditioners have faster convergence rates than block Jacobi relaxation methods. Numerical experiments examine additional properties of the two classes of methods, including the effects of direction of flow, discretization, and grid ordering on performance.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号