首页> 美国政府科技报告 >Investigation of the Sensitivity, Selectivity, and Reversibility of the Chemically-Sensitive Field-Effect Transistor (CHEMFET) to Detect Nitrogen Dioxide, Dimethyl Methylphosphonate, and Boron Trifluoride.
【24h】

Investigation of the Sensitivity, Selectivity, and Reversibility of the Chemically-Sensitive Field-Effect Transistor (CHEMFET) to Detect Nitrogen Dioxide, Dimethyl Methylphosphonate, and Boron Trifluoride.

机译:研究化学敏感场效应晶体管(CHEmFET)检测二氧化氮,甲基膦酸二甲酯和三氟化硼的灵敏度,选择性和可逆性。

获取原文

摘要

This study investigated the sensitivity, selectivity, and reversibility of a chemically-sensitive field-effect transistor (CHEMFET) gas microsensor. Various physical operating parameters were tested to determine which produced the most significant sensitivity, selectivity, and reversibility which were computed from response changes generated from electrical conductivity modulations when exposed to challenge gases. The variable operating parameters included: thinfilm material, film thickness, challenge gas specie, challenge gas concentration, and operating temperature. Copper phthalocyanine and lead phthalocyanine were used as thin films to detect the following challenge gases: nitrogen dioxide, dimethyl methylphosphonate, boron trifluoride, methanol, carbon monoxide, vinyl chloride, and trichloroethylene. Tests revealed that copper phthalocyanine was the most sensitive to dimethyl methylphosphonate and boron trifluoride, whereas lead phthalocyanine was the most sensitive to the remaining challenge gases. The CHEMFET was selective to the binary challenge gas combinations. The films were most selective for nitrogen dioxide. The CHEMFET was fully reversibly, and the time duration for full reversibility increased with increasing challenge gas concentrations and increasing time of exposure.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号