首页> 美国政府科技报告 >Inviscid Disturbance Dynamics in Barotropic Shear Flows
【24h】

Inviscid Disturbance Dynamics in Barotropic Shear Flows

机译:正压剪切流中的非线性扰动动力学

获取原文

摘要

The inviscid nature of disturbance evolution in shear flows is investigated as aninitial-value problem within the framework of nondivergent vorticity dynamics. To ensure a basic understanding of physical processes, disturbance evolution is first considered in a rectilinear system of simple shear. Particular emphasis is placed on identifying how the disturbance evolution depends on the zonal wavenumber and on the meridional structure of the initial conditions. Insight acquired from the rectilinear problem is then applied to a bounded Rankine vortex. Here, the dependency of disturbance evolution on the azimuthal wavenumber is of special interest. Recent development of a low-frequency balance theory for rapidly rotating vortices has provided observational evidence that the low azimuthal wavenumber asymmetries, especially wavenumber one, are dominant in the near-vortex region. The radial structure and location of the initial conditions are found to be critical factors in determining how rapidly a disturbance is compressed or elongated. This in turn controls the rate of disturbance growth or decay. For swirling flows, a definition of an effective shear that accounts for both the radial variations in the initial conditions as well as the radial variation in the angular velocity is proposed. Using the reciprocal of this effective shear, time scales for a disturbance to decay to half its initial energy, the half-life time, are calculated for initial conditions and symmetric wind profiles that are found in hurricanes.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号