首页> 外文期刊>Physica, E. Low-dimensional systems & nanostructures >Hydrogen adsorption and storage on palladium-decorated graphene with boron dopants and vacancy defects: A first-principles study
【24h】

Hydrogen adsorption and storage on palladium-decorated graphene with boron dopants and vacancy defects: A first-principles study

机译:具有硼掺杂和空位缺陷的钯修饰石墨烯上的氢吸附和存储:第一性原理研究

获取原文
获取原文并翻译 | 示例
           

摘要

The geometric stability and hydrogen capacity of Pd-decorated graphene with experimentally realizable boron dopants and various vacancy defects including single carbon vacancy (SV), "585"-type double carbon vacancy (585 DCV) and "555-777"-type double carbon vacancy (555-777 DCV) are investigated using the first-principles calculations based on density functional theory (DFT). It is found that among the four types of defective structures, Pd's binding energies on SV and 585 DCV defect graphene sheets exceed the cohesive energy of the Pd metal bulk, thus Pd atoms are well dispersed above defective graphene sheets and effectively prevent Pd clustering. Up to three H-2 molecules can bind to Pd atom on graphene with B dopants, SV and 555-777 DCV defects. For the cases of Pd-decorated graphene with B dopants and 555-777 DCV defect, a single H-2 or two H-2 are molecularly chemisorbed to Pd atom in the form of Pd-H-2 Kubas complex, where the stretched H-H bond is relaxed but not dissociated. Out of two adsorbed H-2, the third H-2 binds to Pd atom by small van der Waals (vdW) forces and the nature of bonding is very weak physisorption. Different from above two cases, three H-2 are all molecularly chemisorbed to Pd atom with stretched H-H bond for Pd-decorated SV defect graphene, the hybridization of the Pd-4d orbitals with the H-2-sigma orbitals and the electrostatic interaction between the Pd cation and the induced H-2 dipole both contribute to the H-2 molecules binding, and the binding energies of 0.25-0.41 eV/H-2 is in the range that can permit H-2 molecules recycling at ambient conditions. (C) 2014 Elsevier B.V. All rights reserved.
机译:具有可实验实现的硼掺杂剂和各种空位缺陷(包括单碳空位(SV),“ 585”型双碳空位(585 DCV)和“ 555-777”型双碳)的Pd装饰石墨烯的几何稳定性和氢容量使用基于密度泛函理论(DFT)的第一原理计算来调查空缺(555-777 DCV)。发现在四种类型的缺陷结构中,SV和585 DCV缺陷石墨烯板上的Pd结合能超过了Pd金属块的内聚能,因此Pd原子很好地分散在缺陷石墨烯板上,并有效地防止了Pd聚集。最多三个H-2分子可以结合B掺杂剂,SV和555-777 DCV缺陷与石墨烯上的Pd原子结合。对于含B掺杂剂和55​​5-777 DCV缺陷的Pd装饰石墨烯,单个H-2或两个H-2以Pd-H-2 Kubas络合物的形式分子化学吸附到Pd原子上,其中拉伸的HH债券是放松,但不解除。在两个吸附的H-2中,第三个H-2通过小的范德华力(vdW)结合到Pd原子上,键的性质非常弱。与上述两种情况不同的是,三个H-2分子都被化学吸附在带有P修饰的SV缺陷石墨烯的HH键延伸的Pd原子上,Pd-4d轨道与H-2-sigma轨道的杂交以及两者之间的静电相互作用。 Pd阳离子和诱导的H-2偶极子都有助于H-2分子的结合,并且0.25-0.41 eV / H-2的结合能在允许H-2分子在环境条件下循环的范围内。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号