首页> 外文期刊>Chemical engineering journal >Predicting the temperature and reactant concentration profiles of reacting flow in the partial oxidation of hot coke oven gas using detailed chemistry and a one-dimensional flow model
【24h】

Predicting the temperature and reactant concentration profiles of reacting flow in the partial oxidation of hot coke oven gas using detailed chemistry and a one-dimensional flow model

机译:使用详细的化学方法和一维流动模型预测热焦炉煤气部分氧化中反应流的温度和反应物浓度分布

获取原文
获取原文并翻译 | 示例
           

摘要

A numerical approach is presented for predicting the species concentrations and temperature profiles of chemically reacting flow in the non-catalytic partial oxidation of hot coke oven gas (HCOG) in a pilotscale reformer installed on an operating coke oven. A detailed chemical kinetic model consisting of 2216 reactions with 257 species ranging in size from the hydrogen radical to coronene was used to predict the chemistries of HCOG reforming and was coupled with a plug model and one-dimensional (1D) flow with axial diffusion model. The HCOG was a multi-component gas mixture derived from coal dry distillation, and was approximated with more than 40 compounds: H-2, CO, CO2, CH4, C-2 hydrocarbons, H2O, aromatic hydrocarbons such as benzene and toluene, and polycyclic aromatic hydrocarbons up to coronene. The measured gas temperature profiles were reproduced successfully by solving the energy balance equation accounting for the heat change induced by chemical reactions and heat losses to the surroundings. The approach was evaluated critically by comparing the computed results with experimental data for exit products such as H-2, CO, CO2, and CH4, in addition to the total exit gas flow rate. The axial diffusion model slightly improves the predictions of H-2, CO, and CO2, but significantly improves those of CH4 and total exit flow rate. The improvements in the model predictions were due primarily to the improved temperature predictions by accounting for axial diffusion in the flow model. (C) 2014 Elsevier B.V. All rights reserved.
机译:提出了一种数值方法,用于预测安装在运行中的焦炉中的中试规模重整炉中热焦炉煤气(HCOG)的非催化部分氧化过程中化学反应流的物质浓度和温度分布。详细的化学动力学模型由2216个反应和257种不同种类组成,大小从氢自由基到苯并戊烯,被用来预测HCOG重整的化学反应,并与塞模型和轴向扩散模型的一维(1D)流耦合。 HCOG是衍生自煤干馏的多组分气体混合物,大约含有40多种化合物:H-2,CO,CO2,CH4,C-2烃,H2O,芳烃(例如苯和甲苯)和多环芳烃,直至并戊烯。通过求解能量平衡方程,成功地重现了所测量的气体温度曲线,该方程考虑了化学反应引起的热变化以及对周围环境的热损失。通过将计算结果与出口产品(例如H-2,CO,CO2和CH4)的实验数据进行比较,并比较总出口气体流速,对方法进行了严格的评估。轴向扩散模型稍微改善了H-2,CO和CO2的预测,但显着改善了CH4和总出口流量的预测。模型预测的改进主要归因于考虑了流动模型中的轴向扩散,因此改进了温度预测。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号