首页> 外文期刊>Energy & fuels >Numerical Simulation of the Partial Oxidation of Hot Coke Oven Gas with a Detailed Chemical Kinetic Model
【24h】

Numerical Simulation of the Partial Oxidation of Hot Coke Oven Gas with a Detailed Chemical Kinetic Model

机译:详细的化学动力学模型对焦炉煤气部分氧化的数值模拟

获取原文
获取原文并翻译 | 示例
       

摘要

The non-catalytic partial oxidation of hot coke oven gas (HCOG) was numerically simulated using a detailed chemical kinetic model and a completely mixed batch reactor model. The kinetic model was primarily based on that developed by Richter and Howard [Phys. Chem. Chem. Phys. 2002, 4(11), 2038-2055], including more than 200 chemical species and more than 2000 elementary-step-like reactions. The HCOG was modeled as a multi-component gas mixture involving H_2, CO, CO_2, CH_4, C_2 hydrocarbons, H_2O, and 31 aromatic hydrocarbons, such as benzene and toluene, as well as polycyclic aromatic hydrocarbons up to coronene, to represent the HCOG tar. The effect of oxygen addition in the inlet gas mixture was investigated at oxygen concentrations from 0 to 15 vol %. The simulations indicated that oxygen was consumed almost completely for the combustion of reactive light gases, such as H_2 and CO, and light hydrocarbons, such as CH_4 and C_2H_6, within a reaction time of a few tens of milliseconds when the inlet gas temperature was 1173 K. In reforming the tar involved in HCOG, the primary role of oxygen should be to induce temperature increases of the reacting gas by combustion, thereby accelerating the subsequent reforming of the tar by steam. A reaction pathway analysis suggested that the co-existence of oxygen and aromatic hydrocarbon radicals was necessary to decompose aromatic compounds into compounds of lower molecular mass.
机译:使用详细的化学动力学模型和完全混合的间歇反应器模型,对热焦炉煤气(HCOG)的非催化部分氧化进行了数值模拟。动力学模型主要基于Richter和Howard [Phys。化学化学物理2002,4(11),2038-2055],包括200多个化学物种和2000多个基本步骤样反应。将HCOG建模为包含H_2,CO,CO_2,CH_4,C_2碳氢化合物,H_2O和31种芳烃(例如苯和甲苯)以及多环芳烃(直至苯二酚)的多组分气体混合物,以代表HCOG柏油。在氧气浓度为0至15体积%的情况下研究了氧气在进气混合物中的添加效果。模拟表明,当进气温度为1173时,在几十毫秒的反应时间内,氧气几乎完全消耗掉,从而燃烧了诸如H_2和CO之类的反应性轻质气体以及诸如CH_4和C_2H_6之类的轻质烃。 K.在重整涉及HCOG的焦油时,氧气的主要作用应该是通过燃烧引起反应气体的温度升高,从而加快随后通过蒸汽重整焦油的速度。反应路径分析表明,氧和芳烃自由基的共存是将芳族化合物分解为低分子量化合物所必需的。

著录项

  • 来源
    《Energy & fuels》 |2010年第janaafeba期|165-172|共8页
  • 作者单位

    Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580, Japan;

    Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:42:00

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号