...
首页> 外文期刊>Physica, A. Statistical mechanics and its applications >Irreversibility and entropy production in transport phenomena i
【24h】

Irreversibility and entropy production in transport phenomena i

机译:运输现象中的不可逆性和熵产生

获取原文
获取原文并翻译 | 示例

摘要

The linear response framework was established a half-century ago, but no persuasive direct derivation of entropy production has been given in this scheme. This long-term puzzle has now been solved in the present paper. The irreversible part of the entropy production in the present theory is given by (_(dSdt)irr)=(dUdt)T with the internal energy U(t) of the relevant system. Here, U(t)=〈 ?_0〉t=Tr?_0ρ(t) for the Hamiltonian ~(H0) in the absence of an external force and for the density matrix ρ(t). As is well known, we have (_(dSdt)irr)=0 if we use the linear-order density matrix ρ_(lr)(t)= ρ_0+ρ_1(t). Surprisingly, the correct entropy production is given by the second-order symmetric term ρ_2(t) as (dS/dt)_(irr)=(1/T)Tr?_0ρ′_2(t). This is shown to agree with the ordinary expression J·E/T=σE ~2/T in the case of electric conduction for a static electric field E, using the relations Tr?_0ρ′_2(t)=- Tr??_1(t)ρ_1(t)=Tr?·Eρ _1(t)=J·E (Joule heat), which are derived from the second-order von Neumann equation iLatin small letter h with strokedρ_2(t)dt=[ ?_0,ρ_2(t)]+[?_1(t), ρ_1(t)]. Here ?_1(t) denotes the partial Hamiltonian due to the external force such as ?_1(t)=- e∑_jr_i·E≡-A·E in electric conduction. Thus, the linear response scheme is not closed within the first order of an external force, in order to manifest the irreversibility of transport phenomena. New schemes of steady states are also presented by introducing relaxation-type (symmetry-separated) von Neumann equations. The concept of stationary temperature T_(st) is introduced, which is a function of the relaxation time τ_r characterizing the rate of extracting heat outside from the system. The entropy production in this steady state depends on the relaxation time. A dynamical-derivative representation method to reveal the irreversibility of steady states is also proposed. The present derivation of entropy production is directly based on the first principles of using the projected density matrix ρ_2(t) or more generally symmetric density matrix ρ_(sym)(t), while the previous standard argument is due to the thermodynamic energy balance. This new derivation clarifies conceptually the physics of irreversibility in transport phenomena, using the symmetry of non-equilibrium states, and this manifests the duality of current and entropy production.
机译:线性响应框架是在半个世纪前建立的,但是在该方案中并未给出有说服力的熵产生直接推导。本论文现已解决了这个长期难题。在本理论中,熵产生的不可逆部分由(_(dSdt)irr)=(dUdt)T给出,具有相关系统的内部能量U(t)。在此,对于不存在外力的哈密顿量〜(H0),对于密度矩阵ρ(t),U(t)= <α_0> t =Trα_0ρ(t)。众所周知,如果使用线性阶数密度矩阵ρ_(lr)(t)=ρ_0+ρ_1(t),则(_(dSdt)irr)= 0。令人惊讶地,正确的熵产生由二阶对称项ρ_2(t)给出为(dS / dt)_(irr)=(1 / T)Tr?_0ρ′_2(t)。对于关系为Tr 2 _0ρ′_2(t)=-Tr 12的关系,在静电场E为导电的情况下,这与常式J·E / T =σE〜2 / T一致。 (t)ρ_1(t)= Tr?·Eρ_1(t)= J·E(焦耳热),是从二阶冯·诺伊曼方程iLatin小写字母h推导出ρ_2(t)dt = [?_0 ,ρ_2(t)] + [?_ 1(t),ρ_1(t)]。这里,λ_1(t)表示由于外力而产生的部分哈密顿量,例如,在电导通中,λ_1(t)=-e∑_jr_i·E≡-A·E。因此,线性响应方案不会在外力的第一阶内闭合,以便表现出传输现象的不可逆性。通过引入松弛型(对称分隔)冯·诺伊曼方程,还提出了新的稳态方案。引入了固定温度T_(st)的概念,它是弛豫时间τ_r的函数,弛豫时间τ_r表征了从系统中抽出热量的速率。在此稳态下的熵产生取决于弛豫时间。还提出了一种揭示稳态不可逆性的动态导数表示方法。熵产生的当前推导直接基于使用投影密度矩阵ρ_2(t)或更一般地对称密度矩阵ρ_(sym)(t)的第一原理,而先前的标准论证是由于热力学能量平衡引起的。这个新的推导使用非平衡态的对称性从概念上阐明了运输现象中不可逆的物理现象,这表明了电流和熵产生的对偶性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号