...
首页> 外文期刊>Physica, A. Statistical mechanics and its applications >Irreversibility and entropy production in transport phenomena, II: Statistical-mechanical theory on steady states including thermal disturbance and energy supply
【24h】

Irreversibility and entropy production in transport phenomena, II: Statistical-mechanical theory on steady states including thermal disturbance and energy supply

机译:运输现象中的不可逆性和熵产生,II:稳态的统计力学理论,包括热扰动和能量供应

获取原文
获取原文并翻译 | 示例

摘要

Some general aspects of nonlinear transport phenomena are discussed on the basis of two kinds of formulations obtained by extending Kubo's perturbational scheme of the density matrix and Zubarev's non-equilibrium statistical operator formulation. Both formulations are extended up to infinite order of an external force in compact forms and their relationship is clarified through a direct transformation. In order to make it possible to apply these formulations straightforwardly to thermal disturbance, its mechanical formulation is given (in a more convenient form than Luttinger's formulation) by introducing the concept of a thermal field E T which corresponds to the temperature gradient and by defining its conjugate heat operator A _H= ∑ _j ~(hj)r _j for a local internal energy ~(hj) of the thermal particle j. This yields a transparent derivation of the thermal conductivity κ of the Kubo form and the entropy production (_(dSdt)irr)=κET2T. Mathematical aspects of the non-equilibrium density-matrix will also be discussed. In Paper I (M. Suzuki, Physica A 390 (2011)1904), the symmetry-separated von Neumann equation with relaxation terms extracting generated heat outside the system was introduced to describe the steady state of the system. In this formulation of the steady state, the internal energy 〈 _(H0〉t) is time-independent but the field energy 〈 _(1H1〉t)(=- _(〈A〉t)·F) decreases as time t increases. To overcome this problem, such a statisticalmechanical formulation is proposed here as includes energy supply to the system from outside by extending the symmetry-separated von Neumann equation given in Paper I. This yields a general theory based on the density-matrix formulation on a steady state with energy supply inside and heat extraction outside and consequently with both _(〈 H0〉t) and 〈 _(H1〉t) constant. Furthermore, this steady state gives a positive entropy production. The present general formulation of the current yields a compact expression of the time derivative of entropy production, which yields the plausible justification of the principle of minimum entropy production in the steady state even for nonlinear responses.
机译:讨论了非线性输运现象的一些一般方面,它们是通过扩展密度矩阵的Kubo摄动方案和Zubarev的非平衡统计算子公式获得的两种公式。两种形式都以紧凑的形式扩展到外力的无限顺序,并且它们的关系通过直接变换得以阐明。为了能够将这些公式直接应用于热扰动,通过引入与温度梯度相对应的热场ET的概念并定义其共轭关系,给出了其机械公式(比Luttinger公式更方便的形式)。对于热粒子j的局部内部能量〜(hj),热算子A _H = ∑ _j〜(hj)r _j。这产生了久保型热导率κ和熵产生(_(dSdt)irr)=κET2T的透明推导。还将讨论非平衡密度矩阵的数学方面。在论文I(M.Suzuki,Physica A 390(2011)1904)中,引入了具有松弛项的对称分离冯·诺伊曼方程,该方程提取了系统外部产生的热量,以描述系统的稳态。在这种稳态公式中,内部能量〈_(H0〉 t)与时间无关,但是场能量〈_(1H1〉 t)(=-_(〈A〉 t)·F)随时间t减小增加。为了克服这个问题,这里提出了一种统计力学公式,其中包括通过扩展论文I中给出的对称分隔的von Neumann方程从外部向系统提供能量的方法。这产生了一个基于密度矩阵公式的一般理论。内部状态为能量供应,外部为热量提取,因此_(〈H0〉 t)和〈_(H1〉 t)都是常数。此外,该稳态给出正熵产生。当前电流的一般公式产生了熵产生时间导数的紧凑表达,这给出了即使在非线性响应下,稳态时最小熵产生原理的合理证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号