首页> 外文期刊>Physica status solidi, B. Basic research >Carrier-mediated stabilization of ferromagnetism in semiconductors: holes and electrons
【24h】

Carrier-mediated stabilization of ferromagnetism in semiconductors: holes and electrons

机译:载流子介导的半导体中铁磁性的稳定化:空穴和电子

获取原文
获取原文并翻译 | 示例
           

摘要

Band structure models are proposed to help understand carrier-induced ferromagnetism in diluted magnetic semiconductors. We describe both hole- and electron-mediated ferromagnetism. For hole-mediated ferromagnetism, we show that there are two distinct mechanisms related to the stabilization of ferromagnetism. The difference between them is related to the position of the impurity d levels with respect to the valence band edge. If the impurity states are in the band gap, ferromagnetism can be explained by double exchange, which is related to the direct coupling between the impurity levels, whereas if the filled impurity states are below the VBM, ferromagnetism can be explained by the Zener model, which is related to the coupling between the impurity d levels and the host valence p states. In both cases, it is necessary to have holes, either free or localized, to stabilize the ferromagnetism. Our model successfully explains the ground state magnetic configuration of CdMnTe, GaMnAs, ZnMnO, and GaMnN. An extension of our model can also successfully explain the intriguing behavior of GaMnN. We show that at low Mn concentration, its ground state is FM, although AFM can be stabilized by increasing the Mn concentration, applying pressure, or by compensating the holes. For electron-mediated ferromagnetism, we point out that it is necessary first to increase the exchange splitting of the conduction band. This can be done by reducing the symmetry of the system, by quantum confinement, or by changing the magnetic impurities from transition metals to rare earths. Our results also clarify some issues related to experimental works, such as the negative exchange splitting of the conduction band in GaMnAs quantum wells and the stabilization of ferromagnetism in GaGdN. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
机译:提出了能带结构模型,以帮助理解稀磁半导体中载流子引起的铁磁性。我们描述了空穴和电子介导的铁磁性。对于空穴介导的铁磁性,我们表明有两种与铁磁性稳定相关的不同机制。它们之间的差异与杂质d水平相对于价带边缘的位置有关。如果杂质态处于带隙中,则可以用双交换来解释铁磁性,这与杂质能级之间的直接耦合有关;而如果填充的杂质态低于VBM,则可​​以用齐纳模型来解释铁磁性,这与杂质d能级和主价p态之间的耦合有关。在这两种情况下,都必须有自由或局部的孔,以稳定铁磁性。我们的模型成功地解释了CdMnTe,GaMnAs,ZnMnO和GaMnN的基态磁性结构。我们模型的扩展也可以成功地解释GaMnN的有趣行为。我们表明,在低Mn浓度下,其基态为FM,尽管AFM可以通过增加Mn浓度,施加压力或通过补偿孔来稳定。对于电子介导的铁磁性,我们指出有必要首先增加导带的交换分裂。这可以通过减小系统的对称性,通过量子限制或通过将磁性杂质从过渡金属变为稀土来实现。我们的结果还阐明了与实验工作相关的一些问题,例如GaMnAs量子阱中导带的负交换分裂和GaGdN中铁磁性的稳定化。 (c)2006年WILEY-VCH Verlag GmbH&Co. KGaA,魏因海姆。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号