...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >The molecular basis for sound velocity in n-alkanes, 1-alcohols and dimethylsiloxanes
【24h】

The molecular basis for sound velocity in n-alkanes, 1-alcohols and dimethylsiloxanes

机译:正构烷烃,1-醇和二甲基硅氧烷中声速的分子基础

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The velocity of sound has been determined in pure liquid n-alkanes ( pentane to hexadecane), 1-alcohols ( methanol to 1-dodecanol) and dimethylsiloxanes ( 200 fluid (L2, 0.65 cSt) to 200 fluid ( 5000 cSt)) at 20degreesC. Corresponding density data have been taken from the literature and the adiabatic compressibility determined. The measured adiabatic compressibility has been compared with two molecular models of sound velocity, the Schaaffs model and a development of the Urick equation. The Urick equation approach is based on a determination of the compressibility of the methylene or siloxane repeat units which make up the chains in these linear molecules. We show that the Urick equation approach accurately predicts sound velocity and compressibility for the higher members of each series, whilst the Schaaffs approach fails for the 1-alcohols. We suggest this is because of the influence of the hydroxyl end group on nearby molecules through hydrogen bonding. The Schaaffs approach does not take into account interactions between the end units and the chain repeat units. This interaction modifies the derived compressibility of the methylene groups reducing their compressibility as compared to their compressibillity in the n-alkanes. The technique described provides valuable new insights into end-group, inter-molecular and intra-molecular interactions in liquid linear-chain molecules. We suggest that it provides a powerful new method for characterising polymeric fluid materials. [References: 23]
机译:已在20°C下测定了纯液体正构烷烃(戊烷至十六烷),1-醇(甲醇至1-十二烷醇)和二甲基硅氧烷(200流体(L2,0.65 cSt)至200流体(5000 cSt))的声速。相应的密度数据已从文献中获取,并确定了绝热压缩率。已将测得的绝热压缩率与两个声速分子模型,Schaaffs模型和Urick方程的发展进行了比较。 Urick方程方法基于确定构成这些线性分子中链的亚甲基或硅氧烷重复单元的可压缩性。我们表明,Urick方程方法可以准确预测每个系列较高成员的声速和可压缩性,而Schaaffs方法对于1-醇则无效。我们认为这是由于羟基端基通过氢键作用对附近分子的影响。 Schaaffs方法没有考虑末端单元和链重复单元之间的相互作用。与它们在正构烷烃中的可压缩性相比,这种相互作用改变了亚甲基的衍生可压缩性,从而降低了它们的可压缩性。所描述的技术为液体线性链分子中的端基,分子间和分子内相互作用提供了有价值的新见解。我们建议它提供了一种强大的表征聚合物流体材料的新方法。 [参考:23]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号