...
首页> 外文期刊>Physics in medicine and biology. >Real-time prediction and gating of respiratory motion in 3D space using extended Kalman filters and Gaussian process regression network
【24h】

Real-time prediction and gating of respiratory motion in 3D space using extended Kalman filters and Gaussian process regression network

机译:使用扩展的卡尔曼滤波器和高斯过程回归网络实时预测和控制3D空间中的呼吸运动

获取原文
获取原文并翻译 | 示例
           

摘要

The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the radiation treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting respiratory motion in 3D space and realizing a gating function without pre-specifying a particular phase of the patient's breathing cycle. The algorithm, named EKF-GPRN(+), first employs an extended Kalman filter (EKF) independently along each coordinate to predict the respiratory motion and then uses a Gaussian process regression network (GPRN) to correct the prediction error of the EKF in 3D space. The GPRN is a nonparametric Bayesian algorithm for modeling input-dependent correlations between the output variables in multi-output regression. Inference in GPRN is intractable and we employ variational inference with mean field approximation to compute an approximate predictive mean and predictive covariance matrix. The approximate predictive mean is used to correct the prediction error of the EKF. The trace of the approximate predictive covariance matrix is utilized to capture the uncertainty in EKF-GPRN(+) prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification enables us to pause the treatment beam over such instances. EKF-GPRN(+) implements a gating function by using simple calculations based on the trace of the predictive covariance matrix. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPRN(+). The experimental results show that the EKF-GPRN(+) algorithm reduces the patient-wise prediction error to 38%, 40% and 40% in root-mean-square, compared to no prediction, at lookahead lengths of 192 ms, 384 ms and 576 ms, respectively. The EKF-GPRN(+) algorithm can further reduce the prediction error by employing the gating function, albeit at the cost of reduced duty cycle. The error reduction allows the clinical target volume to planning target volume (CTV-PTV) margin to be reduced, leading to decreased normal-tissue toxicity and possible dose escalation. The CTV-PTV margin is also evaluated to quantify clinical benefits of EKF-GPRN(+) prediction.
机译:在过去的二十年中,呼吸运动的预测和门控已引起人们的广泛关注,以减少由于呼吸运动引起的放射治疗束的瞄准误差。在本文中,我们提出了一种实时算法,用于预测3D空间中的呼吸运动并实现门控功能,而无需预先指定患者呼吸周期的特定阶段。该算法名为EKF-GPRN(+),首先沿每个坐标独立使用扩展的卡尔曼滤波器(EKF)预测呼吸运动,然后使用高斯过程回归网络(GPRN)校正3D中EKF的预测误差空间。 GPRN是一种非参数贝叶斯算法,用于在多输出回归中对输出变量之间的依赖于输入的相关性进行建模。 GPRN中的推论是很棘手的,我们采用均值场近似的变分推论来计算近似的预测均值和预测协方差矩阵。近似预测均值用于校正EKF的预测误差。近似预测协方差矩阵的轨迹用于捕获EKF-GPRN(+)预测误差中的不确定性,并提前系统性地识别出具有较大大预测误差可能性的呼吸点。这种识别使我们能够在这种情况下暂停治疗束。 EKF-GPRN(+)通过使用基于预测协方差矩阵的轨迹的简单计算来实现选通功能。基于304个呼吸运动轨迹的大型数据库进行了广泛的数值实验,以评估EKF-GPRN(+)。实验结果表明,与无预测相比,EKF-GPRN(+)算法在前瞻长度为192 ms,384 ms的情况下,将根据患者的预测均方根误差降低了38%,40%和40%和576毫秒。 EKF-GPRN(+)算法可以通过采用门控功能进一步降低预测误差,尽管以降低占空比为代价。误差的减少使临床目标体积到计划目标体积(CTV-PTV)的余量减小,从而导致正常组织毒性降低,并可能使剂量增加。还评估了CTV-PTV的余量,以量化EKF-GPRN(+)预测的临床益处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号