...
首页> 外文期刊>Physics in medicine and biology. >Accuracy and optimal timing of activity measurements in estimating the absorbed dose of radioiodine in the treatment of Graves' disease.
【24h】

Accuracy and optimal timing of activity measurements in estimating the absorbed dose of radioiodine in the treatment of Graves' disease.

机译:评估Graves病治疗中放射性碘吸收剂量的活性测量的准确性和最佳时机。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Calculation of the therapeutic activity of radioiodine (131)I for individualized dosimetry in the treatment of Graves' disease requires an accurate estimate of the thyroid absorbed radiation dose based on a tracer activity administration of (131)I. Common approaches (Marinelli-Quimby formula, MIRD algorithm) use, respectively, the effective half-life of radioiodine in the thyroid and the time-integrated activity. Many physicians perform one, two, or at most three tracer dose activity measurements at various times and calculate the required therapeutic activity by ad hoc methods. In this paper, we study the accuracy of estimates of four 'target variables': time-integrated activity coefficient, time of maximum activity, maximum activity, and effective half-life in the gland. Clinical data from 41 patients who underwent (131)I therapy for Graves' disease at the University Hospital in Pisa, Italy, are used for analysis. The radioiodine kinetics are described using a nonlinear mixed-effects model. The distributions of the target variables in the patient population are characterized. Using minimum root mean squared error as the criterion, optimal 1-, 2-, and 3-point sampling schedules are determined for estimation of the target variables, and probabilistic bounds are given for the errors under the optimal times. An algorithm is developed for computing the optimal 1-, 2-, and 3-point sampling schedules for the target variables. This algorithm is implemented in a freely available software tool. Taking into consideration (131)I effective half-life in the thyroid and measurement noise, the optimal 1-point time for time-integrated activity coefficient is a measurement 1 week following the tracer dose. Additional measurements give only a slight improvement in accuracy.
机译:放射性碘(131)I在Graves病治疗中用于个体化剂量测定的治疗活性的计算,需要根据(131)I的示踪剂活性准确估算甲状腺吸收的放射剂量。常用方法(Marinelli-Quimby公式,MIRD算法)分别使用放射性碘在甲状腺中的有效半衰期和时间积分活性。许多医生在不同时间执行一次,两次或至多三个示踪剂剂量活性测量,并通过临时方法计算所需的治疗活性。在本文中,我们研究了四个“目标变量”估计值的准确性:时间积分活动系数,最大活动时间,最大活动时间和腺体有效半衰期。来自意大利比萨大学医院接受Graves病(131)I治疗的41例患者的临床数据用于分析。使用非线性混合效应模型描述了放射性碘动力学。表征患者人群中目标变量的分布。以最小均方根误差为标准,确定用于估计目标变量的最佳1点,2点和3点采样计划,并给出最佳时间下误差的概率边界。开发了一种算法,用于计算目标变量的最佳1点,2点和3点采样计划。该算法在免费的软件工具中实现。考虑到(131)I在甲状腺中的有效半衰期和测量噪声,时间积分活动系数的最佳1点时间是在示踪剂剂量后1周进行的测量。附加测量仅会稍微改善精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号