...
首页> 外文期刊>Philosophical Transactions of the Royal Society of London, Series B. Biological Sciences >Darwin at the molecular scale: selection and variance in electron tunnelling proteins including cytochrome c oxidase
【24h】

Darwin at the molecular scale: selection and variance in electron tunnelling proteins including cytochrome c oxidase

机译:达尔文的分子尺度:电子隧穿蛋白(包括细胞色素C氧化酶)的选择和变异

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Biological electron transfer is designed to connect catalytic clusters by chains of redox cofactors. A review of the characterized natural redox proteins with a critical eye for molecular scale measurement of variation and selection related to physiological function shows no statistically significant differences in the protein medium lying between cofactors engaged in physiologically beneficial or detrimental electron transfer. Instead, control of electron tunnelling over long distances relies overwhelmingly on less than 14 angstrom spacing between the cofactors in a chain. Near catalytic clusters, shorter distances (commonly less than 7 angstrom) appear to be selected to generate tunnelling frequencies sufficiently high to scale the barriers of multi-electron, bond-forming/-breaking catalysis at physiological rates. We illustrate this behaviour in a tunnelling network analysis of cytochrome c oxidase. In order to surmount the large, thermally activated, adiabatic barriers in the 5-10 kcal mol(-1) range expected for H+ motion and 02 reduction at the binuclear centre of oxidase on the 10(3)-10(5) s(-1) time-scale of respiration, electron access with a tunnelling frequency of 10(9) or 10(10) s(-1) is required. This is provided by selecting closely placed redox centres, such as haem a (6.9 angstrom) or tyrosine (4.9 angstrom). A corollary is that more distantly placed redox centres, such as Cu-A, cannot rapidly scale the catalytic site barrier, but must send their electrons through more closely placed centres, avoiding direct short circuits that might circumvent proton pumping coupled to haems a to a(3) electron transfer. The selection of distances and energetic barriers directs electron transfer from Cu-A to haem a rather than a(3), without any need for delicate engineering of the protein medium to 'hard wire' electron transfer. Indeed, an examination of a large number of oxidoreductases provides no evidence of such naturally selected wiring of electron tunnelling pathways.
机译:生物电子转移旨在通过氧化还原辅因子链连接催化簇。用分子生物学方法对与生理功能有关的变异和选择进行分子尺度测量的特征眼天然氧化还原蛋白的综述显示,参与生理有益或有害电子转移的辅因子之间的蛋白质培养基之间没有统计学上的显着差异。相反,长距离电子隧穿的控制绝大多数取决于链中辅因子之间的间距小于14埃。在催化簇附近,似乎选择了较短的距离(通常小于7埃)以产生足够高的隧穿频率,以在生理速率下扩展多电子键形成/断裂催化的势垒。我们在细胞色素C氧化酶的隧道网络分析中说明了这种行为。为了克服在5-10 kcal mol(-1)范围内预期发生H +运动和02在10(3)-10(5)s的双核中心氧化还原的绝热壁垒( -1)呼吸的时间尺度,要求电子的隧穿频率为10(9)或10(10)s(-1)。这可以通过选择放置紧密的氧化还原中心来实现,例如血红素a(6.9埃)或酪氨酸(4.9埃)。一个必然的结论是,距离较远的氧化还原中心(例如Cu-A)无法迅速扩展催化位点的势垒,但必须将其电子通过位置更靠近的中心,从而避免直接短路,而短路可能会避开与血红素a到a耦合的质子泵浦。 (3)电子转移。距离和高能垒的选择可指导电子从Cu-A转移到血红素a而不是a(3),而无需对蛋白质介质进行精细设计以实现“硬线”电子转移。确实,对大量氧化还原酶的检查没有提供电子隧穿路径的这种自然选择的布线的证据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号