...
首页> 外文期刊>Celestial Mechanics and Dynamical Astronomy: An international journal of space dynamics >Position and velocity perturbations for the determination of geopotential from space geodetic measurements
【24h】

Position and velocity perturbations for the determination of geopotential from space geodetic measurements

机译:通过空间大地测量确定位置势的位置和速度扰动

获取原文
获取原文并翻译 | 示例

摘要

Although space geodetic observing systems have been advanced recently to such a revolutionary level that low Earth Orbiting (LEO) satellites can now be tracked almost continuously and at the unprecedented high accuracy, none of the three basic methods for mapping the Earth's gravity field, namely, Kaula linear perturbation, the numerical integration method and the orbit energy-based method, could meet the demand of these challenging data. Some theoretical effort has been made in order to establish comparable mathematical modellings for these measurements, notably by Mayer-Gurr et al. (J Geod 78:462-480, 2005). Although the numerical integration method has been routinely used to produce models of the Earth's gravity field, for example, from recent satellite gravity missions CHAMP and GRACE, the modelling error of the method increases with the increase of the length of an arc. In order to best exploit the almost continuity and unprecedented high accuracy provided by modem space observing technology for the determination of the Earth's gravity field, we propose using measured orbits as approximate values and derive the corresponding coordinate and velocity perturbations. The perturbations derived are quasi-linear, linear and of second-order approximation. Unlike conventional perturbation techniques which are only valid in the vicinity of reference mean values, our coordinate and velocity perturbations are mathematically valid uniformly through a whole orbital arc of any length. In particular, the derived coordinate and velocity perturbations are free of singularity due to the critical inclination and resonance inherent in the solution of artificial satellite motion by using various types of orbital elements. We then transform the coordinate and velocity perturbations into those of the six Keplerian orbital elements. For completeness, we also briefly outline how to use the derived coordinate and velocity perturbations to establish observation equations of space geodetic measurements for the determination of geopotential.
机译:尽管空间大地观测系统最近已经发展到革命性的水平,以至现在几乎可以连续不断地以前所未有的高精度跟踪低地球轨道(LEO)卫星,但是,绘制地球重力场的三种基本方法都没有,考拉线性摄动,数值积分方法和基于轨道能量的方法都可以满足这些挑战性数据的需求。为了建立用于这些测量的可比较数学模型,已经进行了一些理论上的努力,特别是Mayer-Gurr等人。 (J Geod 78:462-480,2005)。尽管通常使用数值积分方法来生成地球重力场的模型,例如,根据最近的卫星重力任务CHAMP和GRACE,但是该方法的建模误差会随着弧长的增加而增加。为了最好地利用现代空间观测技术提供的几乎连续性和前所未有的高精度来确定地球重力场,我们建议使用实测轨道作为近似值,并推导相应的坐标和速度扰动。得出的扰动是拟线性的,线性的和二阶近似的。与仅在参考平均值附近有效的常规摄动技术不同,我们的坐标和速度摄动在数学上在任意长度的整个轨道弧上均有效。特别是,由于使用各种类型的轨道元素解决人工卫星运动时固有的临界倾角和共振,因此得出的坐标和速度摄动没有奇异性。然后,我们将坐标和速度摄动转换为六个开普勒轨道要素的坐标和速度摄动。为了完整起见,我们还简要概述了如何使用导出的坐标和速度扰动来建立空间大地测量测量的观测方程式以确定地势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号