首页> 外文期刊>Steel & Composite Structures: An International Journal >A computational shear displacement model for vibrational analysis of functionally graded beams with porosities
【24h】

A computational shear displacement model for vibrational analysis of functionally graded beams with porosities

机译:孔隙度函数梯度梁振动分析的计算剪力位移模型

获取原文
获取原文并翻译 | 示例
       

摘要

This work presents a free vibration analysis of functionally graded metal-ceramic (FG) beams with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. For this purpose, a simple displacement field based on higher order shear deformation theory is implemented. The proposed theory is based on the assumption that the transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. The most interesting feature of this theory is that it accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the beam without using shear correction factors. In addition, it has strong similarities with Euler-Bernoulli beam theory in some aspects such as equations of motion, boundary conditions, and stress resultant expressions. The rule of mixture is modified to describe and approximate material properties of the FG beams with porosity phases. By employing the Hamilton's principle, governing equations of motion for coupled axial-shear-flexural response are determined. The validity of the present theory is investigated by comparing some of the present results with those of the first-order and the other higher-order theories reported in the literature. Illustrative examples are given also to show the effects of varying gradients, porosity volume fraction, aspect ratios, and thickness to length ratios on the free vibration of the FG beams.
机译:这项工作提出了功能梯度金属陶瓷(FG)梁的自由振动分析,同时考虑了在其制造过程中功能梯度材料(FGM)内部可能出现的孔隙。为此,实现了基于高阶剪切变形理论的简单位移场。所提出的理论基于这样的假设,即横向位移由弯曲和剪切分量组成,其中弯曲分量对剪切力没有贡献,同样,剪切分量对弯矩也没有贡献。该理论最有趣的特征是,它解释了整个厚度上横向剪切应变的二次变化,并且在不使用剪切校正因子的情况下,满足了梁顶面和底面的零牵引边界条件。此外,它在运动方程,边界条件和应力合成表达式等方面与Euler-Bernoulli梁理论有很强的相似性。修改了混合规则,以描述和近似具有多孔相的FG梁的材料特性。通过采用汉密尔顿原理,确定了耦合的轴向剪切挠曲响应的运动控制方程。通过将一些当前结果与文献中报道的一阶和其他高阶理论的结果进行比较,可以研究本理论的有效性。还给出了说明性示例,以显示变化的梯度,孔隙率,体积比,纵横比以及厚度与长度之比对FG梁自由振动的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号