首页> 外文期刊>Statistics in medicine >A Bayesian approach for instrumental variable analysis with censored time-to-event outcome
【24h】

A Bayesian approach for instrumental variable analysis with censored time-to-event outcome

机译:贝叶斯方法进行工具变量分析并检查事件发生时间

获取原文
获取原文并翻译 | 示例

摘要

Instrumental variable (IV) analysis has been widely used in economics, epidemiology, and other fields to estimate the causal effects of covariates on outcomes, in the presence of unobserved confounders and/or measurement errors in covariates. However, IV methods for time-to-event outcome with censored data remain underdeveloped. This paper proposes a Bayesian approach for IV analysis with censored time-to-event outcome by using a two-stage linear model. A Markov chain Monte Carlo sampling method is developed for parameter estimation for both normal and non-normal linear models with elliptically contoured error distributions. The performance of our method is examined by simulation studies. Our method largely reduces bias and greatly improves coverage probability of the estimated causal effect, compared with the method that ignores the unobserved confounders and measurement errors. We illustrate our method on the Women's Health Initiative Observational Study and the Atherosclerosis Risk in Communities Study. Copyright (c) 2014 John Wiley & Sons, Ltd.
机译:在存在未观察到的混杂因素和/或测量误差的情况下,工具变量(IV)分析已广泛用于经济学,流行病学和其他领域,以评估协变量对结果的因果关系。但是,用于带有检查数据的事件发生时间的IV方法仍然不完善。本文提出了一种贝叶斯方法,通过两阶段线性模型对IV事件进行时间分析。开发了一种马尔可夫链蒙特卡罗采样方法,用于估计具有椭圆轮廓误差分布的正态和非正态线性模型的参数。我们的方法的性能通过仿真研究进行了检验。与忽略未观察到的混杂因素和测量误差的方法相比,我们的方法可大大减少偏差并大大提高估计因果效应的覆盖率。我们在妇女健康倡议观察研究和社区中动脉粥样硬化风险研究中举例说明了我们的方法。版权所有(c)2014 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号