首页> 外文期刊>Soft computing: A fusion of foundations, methodologies and applications >An efficient hybrid evolutionary algorithm for scheduling with setup times and weighted tardiness minimization
【24h】

An efficient hybrid evolutionary algorithm for scheduling with setup times and weighted tardiness minimization

机译:一种用于建立时间和加权拖延最小化的高效混合进化算法

获取原文
获取原文并翻译 | 示例

摘要

We confront the job shop scheduling problem with sequence-dependent setup times and weighted tardiness minimization. To solve this problem, we propose a hybrid metaheuristic that combines the intensification capability of tabu search with the diversification capability of a genetic algorithm which plays the role of long term memory for tabu search in the combined approach. We define and analyze a new neighborhood structure for this problem which is embedded in the tabu search algorithm. The efficiency of the proposed algorithm relies on some elements such as neighbors filtering and a proper balance between intensification and diversification of the search. We report results from an experimental study across conventional benchmarks, where we analyze our approach and demonstrate that it compares favorably to the state-of-the-art methods.
机译:我们面对与序列相关的建立时间和加权拖延最小化的车间调度问题。为了解决这个问题,我们提出了一种混合元启发式算法,它结合了禁忌搜索的增强能力和遗传算法的多样化能力,在组合方法中,遗传算法起着禁忌搜索的长期记忆的作用。我们针对此问题定义并分析了一种新的邻域结构,该结构已嵌入禁忌搜索算法中。所提出算法的效率取决于某些因素,例如邻居过滤以及搜索的强度和多样性之间的适当平衡。我们报告了一项跨常规基准的实验研究结果,我们在其中分析了我们的方法,并证明了该方法与最新方法相比具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号