...
首页> 外文期刊>Small >Shape-Dependent Activity of Ceria for Hydrogen Electro-Oxidation in Reduced-Temperature Solid Oxide Fuel Cells
【24h】

Shape-Dependent Activity of Ceria for Hydrogen Electro-Oxidation in Reduced-Temperature Solid Oxide Fuel Cells

机译:氧化铈对低温固态氧化物燃料电池中氢电氧化的形状依赖性活性

获取原文
获取原文并翻译 | 示例
           

摘要

Single crystalline ceria nanooctahedra, nanocubes, and nanorods are hydrothermally synthesized, colloidally impregnated into the porous La0.9Sr0.1Ga0.8Mg0.2O3- (LSGM) scaffolds, and electrochemically evaluated as the anode catalysts for reduced temperature solid oxide fuel cells (SOFCs). Well-defined surface terminations are confirmed by the high-resolution transmission electron microscopy (111) for nanooctahedra, (100) for nanocubes, and both (110) and (100) for nanorods. Temperature-programmed reduction in H-2 shows the highest reducibility for nanorods, followed sequentially by nanocubes and nanooctahedra. Measurements of the anode polarization resistances and the fuel cell power densities reveal different orders of activity of ceria nanocrystals at high and low temperatures for hydrogen electro-oxidation, i.e., nanorods > nanocubes > nanooctahedra at T 450 degrees C and nanooctahedra > nanorods > nanocubes at T 500 degrees C. Such shape-dependent activities of these ceria nanocrystals have been correlated to their difference in the local structure distortions and thus in the reducibility. These findings will open up a new strategy for design of advanced catalysts for reduced-temperature SOFCs by elaborately engineering the shape of nanocrystals and thus selectively exposing the crystal facets.
机译:水热合成单晶二氧化铈纳米八面体,纳米立方和纳米棒,将其胶体浸渍到多孔La0.9Sr0.1Ga0.8Mg0.2O3-(LSGM)支架中,并进行电化学评估,以作为低温固体氧化物燃料电池(SOFC)的阳极催化剂。高分辨率的透射电子显微镜(111)用于纳米八面体,(100)对于纳米立方体,以及(110)和(100)对于纳米棒,确认了明确定义的表面终止。 H-2的程序升温还原显示出对纳米棒的最高还原性,其次是纳米立方体和纳米八面体。阳极极化电阻和燃料电池功率密度的测量揭示了在高温和低温下用于氢电氧化的二氧化铈纳米晶体的活性顺序不同,即,纳米棒>纳米立方> T 450摄氏度下的纳米八面体,以及纳米八面体>纳米棒>纳米立方。 T 500摄氏度。这些氧化铈纳米晶体的这种形状依赖性活性已经与它们在局部结构畸变和还原性方面的差异相关。这些发现将通过精心设计纳米晶体的形状,从而选择性地暴露晶面,为设计用于低温SOFC的高级催化剂开辟新的策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号