首页> 外文期刊>Seminars in radiation oncology >Single-photon emission computed tomography and positron-emission tomography assays for tissue oxygenation.
【24h】

Single-photon emission computed tomography and positron-emission tomography assays for tissue oxygenation.

机译:用于组织氧合的单光子发射计算机断层扫描和正电子发射断层扫描测定。

获取原文
获取原文并翻译 | 示例
       

摘要

Radiotherapy prescription can now be customized to target the major mechanism(s) of resistance of individual tumors. In that regard, functional imaging techniques should be exploited to identify the dominant mechanism(s). Tumor biology research has identified several mechanisms of tumor resistance that may be unique to radiation treatments. These fall into 3 broad areas associated with (1) tumor hypoxic fraction, (2) tumor growth rate, (3) and the intrinsic radiosensitivity of tumor clonogens. Imaging research has markers in various stages of development for quantifying relevant information about each of these mechanisms, and those that measure tumor oxygenation and predict for radioresistance are the most advanced. Positron-emission tomography (PET) measurement of oxygen 15 has yielded important information, particularly about brain tissue perfusion, metabolism, and function. Indirect markers of tumor hypoxia have exploited the covalent binding of bioreductive intermediates of azomycin-containing compounds whose uptakes are inversely proportional to intracellular oxygen concentrations. Pilot clinical studies with single-photon emission computed tomography (SPECT) and PET detection of radiolabeled markers to tumor hypoxia have been reported. Recently, other studies have attempted to exploit the reduction properties of both technetium and copper chelates for the selective deposition of radioactive metals in hypoxic tissues. A growing number of potentially useful isotopes are now available for labeling several novel chemicals that could have the appropriate specificity and sensitivity. Preclinical studies with "microSPECT" and "microPET" will be important to define the optimal radiodiagnostic(s) for measuring tissue oxygenation and for determining the time after their administration for optimal hypoxic signal acquisition. Radiolabeled markers of growth kinetics and intrinsic radiosensitivity of cells in solid tumors are also being developed. We conclude that radiation oncology is uniquely positioned to benefit from functional imaging markers that identify important mechanisms of tumor radioresistance, since several strategies for overcoming these individual mechanisms have already been identified. Copyright 2001 by W.B. Saunders Company
机译:现在可以定制放疗处方,以针对单个肿瘤抵抗的主要机制。在这方面,应利用功能成像技术来确定主要机制。肿瘤生物学研究已经确定了多种抗肿瘤机制,这可能是放射治疗所独有的。它们分为与(1)肿瘤低氧分数,(2)肿瘤生长速率,(3)和肿瘤克隆原固有的放射敏感性相关的3个广泛领域。影像学研究在各个发展阶段都有标记,用于量化有关每种机制的相关信息,而测量肿瘤氧合并预测放射抵抗的机制最为先进。正电子发射断层扫描(PET)对氧气的测量15已经获得了重要的信息,尤其是有关脑组织灌注,代谢和功能的信息。肿瘤缺氧的间接标志物已经利用了含阿霉素化合物的生物还原中间体的共价结合,该化合物的摄取与细胞内氧浓度成反比。已经报道了单光子发射计算机断层扫描(SPECT)和PET检测放射性标记物对肿瘤缺氧的临床研究。近来,其他研究尝试利用to和铜螯合物的还原性质来将放射性金属选择性地沉积在低氧组织中。现在,越来越多的潜在有用的同位素可用于标记几种可能具有适当特异性和敏感性的新型化学物质。用“ microSPECT”和“ microPET”进行临床前研究对于确定最佳的放射诊断方法(用于测量组织氧合并确定其给药后的时间以获得最佳的低氧信号采集)将非常重要。实体肿瘤中细胞生长动力学和内在放射敏感性的放射性标记物也正在开发中。我们得出的结论是,由于已经确定了克服这些个别机制的几种策略,因此放射肿瘤学的独特优势是可以从功能性成像标志物中受益,这些标志物可确定肿瘤抗放射性的重要机制。 W.B.版权所有2001桑德斯公司

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号