【24h】

ELLIPSOID BOUNDS FOR CONVEX QUADRATIC INTEGER PROGRAMMING

机译:椭圆二次曲面整数规划的界

获取原文
获取原文并翻译 | 示例
           

摘要

Solving convex quadratic integer minimization problems by a branch-and-bound algorithm requires tight lower bounds on the optimal objective value. To obtain such dual bounds, we follow the approach of [C. Buchheim, A. Caprara, and A. Lodi, Math. Program., 135 (2012), pp. 369-395] and underestimate the objective function by another convex quadratic function that can be minimized over the integers by simply rounding its continuous minimizer. In geometric terms, we approximate the sublevel sets of the original objective function by auxiliary ellipsoids having the strong rounding property, introduced by [R. Hubner and A. Schobel, European J. Oper. Res., 237 (2014), pp. 404-410]. We first consider axisparallel ellipsoids (corresponding to separable convex quadratic functions) and show how to efficiently compute an axisparallel ellipsoid yielding the tightest lower bound, both in the situation where the location of the continuous minimizer is given and in the situation where it varies, as it happens in a branch-and-bound approach. In the latter case, we compute both worst-case and average-case optimal ellipsoids. Moreover, we consider the class of quasi-round ellipsoids (from Hubner and Schobel). In this case, we do not know whether optimal auxiliary ellipsoids can be computed efficiently. However, we present a heuristic for computing an appropriate quasi-round ellipsoid that still yields valid dual bounds; it turns out that using this approach within a branch-and-bound scheme outperforms the approaches based on axisparallel ellipsoid in terms of running times. We finally combine both approaches by introducing the concept of quasi-axisparallel ellipsoids and present a corresponding extension of the heuristic bound computation.
机译:用分支定界算法解决凸二次整数最小化问题需要在最优目标值上设置严格的下限。为了获得这样的双重界限,我们采用了[C. Buchheim,A。Caprara和A.Lodi,数学。 135.(2012),369-395页],并通过另一个凸二次函数低估了目标函数,可以通过简单地舍入其连续最小化器来对整数进行最小化。在几何学上,我们用[R.]引入的具有强舍入特性的辅助椭球来近似原始目标函数的子集。 Hubner和A. Schobel,《欧洲J. Oper》。 Res。237(2014),第404-410页]。我们首先考虑轴平行椭圆体(对应于可分离的凸二次函数),并展示如何在给出连续最小化器位置的情况下以及在其变化的情况下有效地计算出产生最紧密下限的轴平行椭圆体,如下它发生在分支定界方法中。在后一种情况下,我们同时计算最坏情况和最佳情况的最佳椭球。此外,我们考虑了准圆形椭圆体的类别(来自Hubner和Schobel)。在这种情况下,我们不知道是否可以有效地计算出最佳的辅助椭球。但是,我们提出了一种启发式算法,用于计算适当的准圆形椭圆体,该椭圆体仍会产生有效的对偶边界;事实证明,在分支定界方案中使用此方法在运行时间方面优于基于轴平行椭球的方法。最后,我们通过引入准轴平行椭球的概念将两种方法结合起来,并提出了启发式界计算的相应扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号