...
首页> 外文期刊>SIAM Journal on Numerical Analysis >MULTIPLE RECURRENCES AND THE ASSOCIATED MATRIX STRUCTURES STEMMING FROM NORMAL MATRICES
【24h】

MULTIPLE RECURRENCES AND THE ASSOCIATED MATRIX STRUCTURES STEMMING FROM NORMAL MATRICES

机译:正态矩阵的多重递推和关联矩阵结构

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

There are many classical results in which orthogonal vectors stemming from Krylov subspaces are linked to short recurrence relations, e.g., three term recurrences for Hermitian and short rational recurrences for unitary matrices. These recurrence coefficients can be captured in a Hessenberg matrix, whose structure reflects the relation between the spectrum of the original matrix and the recurrences. The easier the recurrences, the faster the orthogonal vectors can be computed possibly resulting in computational savings in the design of, e.g., iterative solvers. In this article we focus on multiple recurrence relations, i.e., the (j + 1)st orthogonal vector satisfies q(j+1) = Sigma(j)(i=j-m) rho(j,i)Aq(i) - Sigma(j)(i=j-l) gamma(j,i)q(i) with rho(j,i), gamma(j,i) scalars and A the matrix defining the Krylov space. Though many compelling results are around, the structure of the corresponding Hessenberg matrix is mostly deduced by analyzing the inner product relations. In this article we first review classical results on short multiple recurrences for normal matrices whose Hermitian conjugate can be written as a "low degree" rational function of the matrix. Instead of considering inner product relations, we reformulate this theory in a matrix setting. Moreover, the matrix building blocks allow us to also derive multiple recurrence relations for B-normal matrices, normal matrices whose eigenvalues lie on the union of curves in the complex plane, normal matrices perturbed by a low rank, and normal matrices A satisfying a "low degree" relation s(A*) = p(A)q(A)(-1). The theoretical results on the structure available in the Hessenberg matrix lead to a new way to compute the orthogonal vectors. The numerical experiments illustrate, however, that straightforward algorithms exploiting this structure are numerically very sensitive, and more research is required to develop robust algorithms.
机译:有许多经典结果,其中将源自Krylov子空间的正交向量与短递归关系相关联,例如Hermitian的三项递归和unit矩阵的短有理递归。可以在Hessenberg矩阵中捕获这些递归系数,该矩阵的结构反映了原始矩阵的频谱与递归之间的关系。重复越容易,正交向量可以被计算得越快,可能导致例如迭代求解器的设计中的计算节省。在本文中,我们关注于多个递归关系,即,第(j + 1)个正交向量满足q(j + 1)= Sigma(j)(i = jm)rho(j,i)Aq(i)-Sigma (j)(i = jl)gamma(j,i)q(i),其中rho(j,i),gamma(j,i)标量和A是定义Krylov空间的矩阵。尽管有许多令人信服的结果,但相应的Hessenberg矩阵的结构主要是通过分析内积关系来推导的。在本文中,我们首先回顾一下有关正常矩阵的短多次递归的经典结果,这些矩阵的厄米共轭可以写成矩阵的“低度”有理函数。我们没有考虑内部积的关系,而是以矩阵形式重新阐述了该理论。此外,矩阵构建块还允许我们针对B-法线矩阵,特征值位于复平面上的曲线并集的法线矩阵,被低阶扰动的法线矩阵以及满足“低度”关系s(A *)= p(A)q(A)(-1)。关于Hessenberg矩阵中可用结构的理论结果导致了一种计算正交向量的新方法。然而,数值实验表明,利用这种结构的简单算法在数值上非常敏感,需要更多的研究来开发鲁棒的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号