...
首页> 外文期刊>SIAM Journal on Numerical Analysis >UNFITTED FINITE ELEMENT METHODS USING BULK MESHES FOR SURFACE PARTIAL DIFFERENTIAL EQUATIONS~*
【24h】

UNFITTED FINITE ELEMENT METHODS USING BULK MESHES FOR SURFACE PARTIAL DIFFERENTIAL EQUATIONS~*

机译:使用体网格求解表面偏微分方程的有限元方法〜*

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we define new unfitted finite element methods for numerically approximating the solution of surface partial differential equations using bulk finite elements. The key idea is that the n-dimensional hypersurface, Γ ? ?~(n+1), is embedded in a polyhedral domain in ?~(n+1) consisting of a union, h, of (n + 1)-simplices. The unifying feature of the methodological approach is that the finite element approximating space is based on continuous piecewise linear finite element functions on the bulk triangulation h which is independent of Γ. Our first method is a sharp interface method (SIF) which uses the bulk finite element space in an approximating weak formulation obtained from integration on a polygonal approximation, Γ_h, of Γ. The full gradient is used rather than the projected tangential gradient and it is this which distinguishes SIF from the method of [M. A. Olshanskii, A. Reusken, and J. Grande, SIAM J. Numer. Anal., 47 (2009), pp. 3339-3358]. The second method is a narrow band method (NBM) in which the region of integration is a narrow band of width O(h). NBM is similar to the method of [K. Deckelnick et al., IMA J. Numer. Anal., 30 (2010), pp. 351-376] but again the full gradient is used in the discrete weak formulation. The a priori error analysis in this paper shows that the methods are of optimal order in the surface L~2 and H~1 norms and have the advantage that the normal derivative of the discrete solution is small and converges to zero. Our third method combines bulk finite elements, discrete sharp interfaces, and narrow bands in order to give an unfitted finite element method for parabolic equations on evolving surfaces. We show that our method is conservative so that it preserves mass in the case of an advection-diffusion conservation law. Numerical results are given which illustrate the rates of convergence.
机译:在本文中,我们定义了新的不适合的有限元方法,用于使用体积有限元数值逼近表面偏微分方程的解。关键思想是n维超曲面Γ? α〜(n + 1)嵌入在α〜(n + 1)中的多面体域中,该多面体域由(n + 1)个单纯形的并集h组成。该方法论方法的统一特征是,有限元近似空间基于体三角剖分h上的连续分段线性有限元函数,而独立于Γ。我们的第一种方法是一种尖锐的界面方法(SIF),该方法在通过对Γ的多边形近似Γ_h进行积分而获得的近似弱公式中使用体有限元空间。使用了完整的梯度而不是投影的切向梯度,正是这一点将SIF与[M]的方法区分开来。 A. Olshanskii,A。Reusken和J. Grande,SIAM J. Numer。 Anal。,47(2009),pp。3339-3358]。第二种方法是窄带方法(NBM),其中积分区域是宽度为O(h)的窄带。 NBM与[K. Deckelnick等,IMA J. Numer。 Anal。,30(2010),pp。351-376],但在离散弱公式中再次使用了完整梯度。本文的先验误差分析表明,该方法在曲面L〜2和H〜1范数上具有最佳阶数,并且具有离散解的法向导数小且收敛到零的优点。我们的第三种方法结合了体有限元,离散的尖锐界面和窄带,从而为演化表面上的抛物线方程提供了一种不适合的有限元方法。我们证明了我们的方法是保守的,因此在对流扩散守恒定律的情况下它可以保留质量。数值结果表明了收敛速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号