...
首页> 外文期刊>Molecular Neurobiology >Mechanism of Oxidative Stress and Synapse Dysfunction in the Pathogenesis of Alzheimer's Disease: Understanding the Therapeutics Strategies
【24h】

Mechanism of Oxidative Stress and Synapse Dysfunction in the Pathogenesis of Alzheimer's Disease: Understanding the Therapeutics Strategies

机译:阿尔茨海默氏病发病机理中氧化应激和突触功能障碍的机制:了解治疗策略

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Synapses are formed by interneuronal connections that permit a neuronal cell to pass an electrical or chemical signal to another cell. This passage usually gets damaged or lost in most of the neurodegenerative diseases. It is widely believed that the synaptic dysfunction and synapse loss contribute to the cognitive deficits in patients with Alzheimer's disease (AD). Although pathological hallmarks of AD are senile plaques, neurofibrillary tangles, and neuronal degeneration which are associated with increased oxidative stress, synaptic loss is an early event in the pathogenesis of AD. The involvement of major kinases such as mitogen-activated protein kinase (MAPK), extracellular receptor kinase (ERK), calmodulin-dependent protein kinase (CaMKII), glycogen synthase-3 beta (GSK-3 beta), cAMP response element-binding protein (CREB), and calcineurin is dynamically associated with oxidative stress-mediated abnormal hyperphosphorylation of tau and suggests that alteration of these kinases could exclusively be involved in the pathogenesis of AD. N-methyl-d-aspartate (NMDA) receptor (NMDAR) activation and beta amyloid (A beta) toxicity alter the synapse function, which is also associated with protein phosphatase (PP) inhibition and tau hyperphosphorylation (two main events of AD). However, the involvement of oxidative stress in synapse dysfunction is poorly understood. Oxidative stress and free radical generation in the brain along with excitotoxicity leads to neuronal cell death. It is inferred from several studies that excitotoxicity, free radical generation, and altered synaptic function encouraged by oxidative stress are associated with AD pathology. NMDARs maintain neuronal excitability, Ca2+ influx, and memory formation through mechanisms of synaptic plasticity. Recently, we have reported the mechanism of the synapse redox stress associated with NMDARs altered expression. We suggest that oxidative stress mediated through NMDAR and their interaction with other molecules might be a driving force for tau hyperphosphorylation and synapse dysfunction. Thus, understanding the oxidative stress mechanism and degenerating synapses is crucial for the development of therapeutic strategies designed to prevent AD pathogenesis.
机译:突触由神经元间连接形成,神经元间连接允许神经元细胞将电或化学信号传递至另一个细胞。这种通道通常在大多数神经退行性疾病中受损或丢失。人们普遍认为,突触功能障碍和突触丧失是阿尔茨海默氏病(AD)患者认知功能下降的原因。尽管AD的病理特征是老年斑,神经原纤维缠结和神经元变性,它们与氧化应激增加有关,但突触丧失是AD发病的早期事件。主要激酶的参与,如促分裂原活化蛋白激酶(MAPK),细胞外受体激酶(ERK),钙调蛋白依赖性蛋白激酶(CaMKII),糖原合酶3 beta(GSK-3 beta),cAMP反应元件结合蛋白(CREB)和钙调神经磷酸酶与tau的氧化应激介导的异常磷酸化异常动态相关,并暗示这些激酶的改变可能仅与AD的发病有关。 N-甲基-d-天冬氨酸(NMDA)受体(NMDAR)激活和β淀粉样蛋白(A beta)毒性会改变突触功能,这也与蛋白磷酸酶(PP)抑制和tau过度磷酸化有关(AD的两个主要事件)。然而,人们对氧化应激与突触功能障碍的关系知之甚少。大脑中的氧化应激和自由基产生以及兴奋性毒性会导致神经元细胞死亡。从几项研究中可以推断出,兴奋性毒性,自由基的产生以及氧化应激引起的突触功能改变均与AD病理相关。 NMDAR通过突触可塑性机制维持神经元兴奋性,Ca2 +流入和记忆形成。最近,我们已经报道了与NMDARs改变表达有关的突触氧化还原应激的机制。我们建议通过NMDAR介导的氧化应激及其与其他分子的相互作用可能是tau过度磷酸化和突触功能障碍的驱动力。因此,了解氧化应激机制和突触的退化对于制定旨在预防AD发病机制的治疗策略至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号