首页> 外文期刊>SAE International Journal of Passenger Cars - Mechanical Systems >Vehicle Aerodynamics Simulation for the Next Generation on the K Computer: Part 2 Use of Dirty CAD Data with Modified Cartesian Grid Approach
【24h】

Vehicle Aerodynamics Simulation for the Next Generation on the K Computer: Part 2 Use of Dirty CAD Data with Modified Cartesian Grid Approach

机译:K计算机上的下一代汽车空气动力学仿真:第2部分使用带有修改的笛卡尔网格方法的脏CAD数据

获取原文
获取原文并翻译 | 示例
           

摘要

The applicability of high-performance computing (HPC) to vehicle aerodynamics is presented using a Cartesian grid approach of computational fluid dynamics. Methodology that allows the user to avoid a large amount of manual work in preparing geometry is indispensable in HPC simulation whereas conventional methodologies require much manual work. The new frame work allowing a solver to treat 'dirty' computer-aided-design data directly was developed with a modified immersed boundary method. The efficiency of the calculation of the vehicle aerodynamics using HPC is discussed. The validation case of flow with a high Reynolds number around a sphere is presented. The preparation time for the calculation is approximately 10 minutes. The calculation time for flow computation is approximately one-tenth of that of conventional unstructured code. Results of large eddy simulation with a coarse grid differ greatly from experimental results, but there is an improvement in the prediction of the drag coefficient prediction when using 23 billion cells. A vehicle aerodynamics simulation was conducted using dirty computer-aided-design data and approximately 19 billion cells. The preparation for the calculation can be completed within a couple of hours. The calculation time for flow computation is approximately one-fifth of that of conventional unstructured code. Reasonable flow results around a vehicle were observed, and there is an improvement in the prediction of the drag coefficient prediction when using 19 billion cells. The possibility of the proposed methodology being an innovative scheme in computational fluid dynamics is shown.
机译:使用计算流体动力学的笛卡尔网格方法,介绍了高性能计算(HPC)对车辆空气动力学的适用性。在HPC仿真中,使用户避免在准备几何图形时避免大量手工工作的方法是必不可少的,而常规方法则需要大量的手工工作。使用改进的浸入边界方法开发了新的框架,允许求解器直接处理“脏”的计算机辅助设计数据。讨论了使用HPC计算车辆空气动力学的效率。提出了绕球体具有高雷诺数的流动的验证案例。计算的准备时间约为10分钟。流计算的计算时间约为常规非结构化代码的十分之一。具有粗网格的大涡模拟结果与实验结果有很大差异,但是当使用230亿个单元时,阻力系数预测的预测有了改进。使用肮脏的计算机辅助设计数据和大约190亿个单元进行了汽车空气动力学仿真。计算准备工作可以在几个小时内完成。流计算的计算时间约为常规非结构化代码的五分之一。观察到车辆周围的合理流动结果,并且当使用190亿个单元时,阻力系数预测的预测有了改进。示出了所提出的方法是计算流体动力学中的创新方案的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号