...
首页> 外文期刊>Organometallics >Double C-H bond activation of an NHCN-methyl group on triruthenium and triosmium carbonyl clusters: A DFT mechanistic study
【24h】

Double C-H bond activation of an NHCN-methyl group on triruthenium and triosmium carbonyl clusters: A DFT mechanistic study

机译:三钌和三os羰基簇上NHCN-甲基的双C-H键活化:DFT机理研究

获取原文
获取原文并翻译 | 示例

摘要

The mechanisms of two recently reported thermal transformations of NHC-triruthenium and -triosmium cluster complexes, which involve the unusual oxidative addition of two C-H bonds of an NHC N-methyl group, have been investigated by density functional theory calculations. The transformations of [M-3(Me(2)Im)(CO)(11)] (Me2IM = 1,3-dimethylimidazol-2-ylidene; M = Ru (1a), Os (1b)) into the ligand-capped dihydrido derivatives [M-3(mu-H)(2)(mu(3)-kappa(2)-MeImCH)(CO)(9)] (M = Ru (3a), Os (3b)) are mechanistically very similar, but they differ in the energy barriers of key steps. For both metal systems (M = Ru, Os), the first step is a ligand rearrangement that moves the Me(2)Im ligand from an equatorial (in 1a and 1b) to an axial coordination position. Both C-H activation steps are oxidative addition processes, and each one is preceded by a CO elimination step that provides a coordinatively unsaturated intermediate. The first C-H oxidative addition occurs via a transition state that implies an unusual interaction of an N-methyl hydrogen atom with two metal atoms simultaneously. This transition state directly leads to an intermediate that contains an edge-bridging hydride and an edge-bridging MeImCH(2) ligand, i.e., [M-3(mu-H)(mu-kappa(2)- MeImCH(2))(CO)(10)] (M = Ru (2a), Os (2b)). The second C-H oxidative addition takes place via an interaction of the unbridged metal atom with a CH2 hydrogen atom of the bridging MeImCH(2) ligand. This gives a face-capping MeImCH ligand and a terminal hydride that subsequently rearranges to an edge-bridging position to give 3a or 3b. The activation barriers of both CO elimination steps are higher for the osmium system than for the ruthenium system. For both metal systems, the slowest step is the first CO elimination.
机译:最近通过密度泛函理论计算研究了NHC-三钌和-tri簇簇配合物的两次热转化机理,其中涉及NHC N-甲基的两个C-H键的不寻常氧化加成。 [M-3(Me(2)Im)(CO)(11)](Me2IM = 1,3-二甲基咪唑-2-亚基; M = Ru(1a),Os(1b))转变为配体-封端的二氢衍生物[M-3(mu-H)(2)(mu(3)-kappa(2)-MeImCH)(CO)(9)](M = Ru(3a),Os(3b))非常相似,但关键步骤的能量障碍有所不同。对于两种金属系统(M = Ru,Os),第一步是配体重排,将Me(2)Im配体从赤道(在1a和1b中)移动到轴向配位位置。这两个C-H活化步骤都是氧化加成过程,每个步骤之前都有一个提供配位不饱和中间体的CO消除步骤。第一次C-H氧化加成反应是通过过渡态发生的,这意味着N-甲基氢原子同时与两个金属原子发生异常相互作用。这种过渡态直接导致一个中间体,该中间体包含一个边缘桥接的氢化物和一个边缘桥接的MeImCH(2)配体,即[M-3(mu-H)(mu-kappa(2)-MeImCH(2)) (CO)(10)](M = Ru(2a),Os(2b))。第二个C-H氧化加成反应是通过未桥联的金属原子与桥接MeImCH(2)配体的CH2氢原子相互作用而进行的。这给出了具有封端的MeImCH配体和末端氢化物,该末端氢化物随后重排至边缘桥接位置,得到3a或3b。 os系统的两个CO消除步骤的活化障碍都比钌系统的活化障碍高。对于两种金属系统,最慢的步骤是首先消除一氧化碳。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号