首页> 外文期刊>Rheologica Acta: An International Journal of Rheology >A microstructural flow-induced crystallization model for film blowing: validation with experimental data
【24h】

A microstructural flow-induced crystallization model for film blowing: validation with experimental data

机译:吹膜的微观结构流致结晶模型:实验数据验证

获取原文
获取原文并翻译 | 示例

摘要

The two-phase microstructural/constitutive model for film blowing of Doufas andMcHugh (D-M) (J Rheol 45:1085-1104, 2001a) is validated against online film data of a linear low-density polyethylene (LLDPE) at a variety of processing conditions. The D-M model includes the effects of thermal and flow-induced (enhanced) crystallization (FIC) coupled with the rheological response of both the melt and semicrystalline phases under fabrication conditions. The model predictions of bubble radius, velocity, and crystallinity profiles are in quantitative agreement with available experimental data over a wide range of blow-up ratios (BUR), take-up ratios (TUR), and bubble cooling rates using the same set of material/model parameters. The model naturally predicts the location of the frost line as a consequence of system stiffening due to crystallization overcoming the pitfalls of traditional modeling approaches that impose it as an artificial boundary condition. For a wide range of processing conditions, it is found that key film mechanical properties including elongation to break, yield stress, tensile modulus, and tear strength correlate well with predicted locked-in extensional stresses and molecular orientation at the frost line enabling development of quantitative structure-process-properties relationships that are useful in product and process development. The D-M model for film blowing is physics-based including elements of molecular rheology (polymer kinetic theory), suspension, and nucleation theories as well as irreversible thermodynamics principles, yet being tractable for continuum-based numerical simulations with practical industrial applicability. The FIC enhancement factor of the model is shown to be proportional to exp (λ_(eff~?w)~2 - 1), where λeff~?w is a molecular chain stretch ratio of the whole chain and proportional to exp(λ~2- 1), where λ is the stretch ratio of the remaining (uncrystallized) amorphous chain, consistent with fundamental kinetic Monte Carlo simulations of flow-induced nucleation of Graham and Olmsted (Phys Rev Lett 103:115702-1- 115702-4, 2009).
机译:Doufas和McHugh(DM)吹膜的两相微结构/本构模型(J Rheol 45:1085-1104,2001a)针对线性低密度聚乙烯(LLDPE)在各种加工条件下的在线膜数据进行了验证。 。 D-M模型包括热和流致(增强)结晶(FIC)的影响,以及在制造条件下熔体和半晶相的流变响应。气泡半径,速度和结晶度分布图的模型预测与在使用相同的一组爆破率(BUR),吸收率(TUR)和气泡冷却速率的大范围内的可用实验数据定量吻合材料/模型参数。该模型自然地预测了霜冻线的位置,这是由于结晶克服了传统建模方法(将其强加为人为边界条件)的陷阱而导致的系统硬化所致。对于广泛的处理条件,发现关键的薄膜机械性能(包括断裂伸长率,屈服应力,拉伸模量和撕裂强度)与霜冻线处的预测的锁定拉伸应力和分子取向密切相关,从而可以开发定量在产品和过程开发中有用的结构-过程-属性关系。吹膜的D-M模型是基于物理的,包括分子流变学(聚合物动力学理论),悬浮和成核理论以及不可逆的热力学原理,但对于基于连续体的数值模拟具有实用的工业实用性,因此易于处理。该模型的FIC增强因子与exp(λ_(eff〜?w)〜2-1)成正比,其中λeff〜?w是整个链的分子链拉伸比,与exp(λ〜 2-1),其中λ是剩余(未结晶)非晶链的拉伸比,与Graham和Olmsted流动诱导形核的基本动力学Monte Carlo模拟一致(Phys Rev Lett 103:115702-1- 115702-4, 2009)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号