首页> 外文期刊>International Journal of Sensors and Sensor Networks >Indoor Positioning of AGVs Based on Multi-Sensor Data Fusion Such as LiDAR
【24h】

Indoor Positioning of AGVs Based on Multi-Sensor Data Fusion Such as LiDAR

机译:

获取原文
获取原文并翻译 | 示例

摘要

In recent years, with the rapid growth in technology and demand for industrial robots, Automated Guided Vehicles (AGVs) have found widespread application in industrial workshops and smart logistics, emerging as a global hot research topic. Due to the volatile and complex working environments, the positioning technology of AGV robots is of paramount importance. To address the challenges associated with AGV robot positioning, such as significant accumulated errors in wheel odometer and Inertial Measurement Unit (IMU), susceptibility of Ultra Wide Band (UWB) positioning accuracy to Non Line of Sight (NLOS) errors, as well as the distortion points and drift in point clouds collected by LiDAR during robot motion, a novel positioning method is proposed. Initially, Weighted Extended Kalman Filter (W-EKF) is employed for the loosely coupled integration of wheel odometer and Ultra Wide Band (UWB) data, transformed into W-EKF pose factors. Subsequently, appropriate addition of W-EKF factors is made during the tight coupling of pre-integrated Inertial Measurement Unit (IMU) with 3D-LiDAR to counteract the distortion points, drift, and accumulated errors generated by LiDAR, thereby enhancing positioning accuracy. After experimentation, the algorithm achieved a final positioning error of only 6.9cm, representing an approximately 80 improvement in positioning accuracy compared to the loosely coupled integration of the two sensors.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号