首页> 外文期刊>The Journal of Physiology >Heterogeneity of synaptic NMDA receptor responses within individual lamina I pain‐processing neurons across sex in rats and humans
【24h】

Heterogeneity of synaptic NMDA receptor responses within individual lamina I pain‐processing neurons across sex in rats and humans

机译:大鼠和人类个体 I 层疼痛加工神经元内突触 NMDA 受体反应跨性别的异质性

获取原文
获取原文并翻译 | 示例

摘要

Abstract Excitatory glutamatergic NMDA receptors (NMDARs) are key regulators of spinal pain processing, and yet the biophysical properties of NMDARs in dorsal horn nociceptive neurons remain poorly understood. Despite the clinical implications, it is unknown whether the molecular and functional properties of synaptic NMDAR responses are conserved between males and females or translate from rodents to humans. To address these translational gaps, we systematically compared individual and averaged excitatory synaptic responses from lamina I pain‐processing neurons of adult Sprague–Dawley rats and human organ donors, including both sexes. By combining patch‐clamp recordings of outward miniature excitatory postsynaptic currents with non‐biased data analyses, we uncovered a wide range of decay constants of excitatory synaptic events within individual lamina I neurons. Decay constants of synaptic responses were distributed in a continuum from 1–20?ms to greater than 1000?ms, suggesting that individual lamina I neurons contain AMPA receptor (AMPAR)‐only as well as GluN2A‐, GluN2B‐ and GluN2D‐NMDAR‐dominated synaptic events. This intraneuronal heterogeneity in AMPAR‐ and NMDAR‐mediated decay kinetics was observed across sex and species. However, we discovered an increased relative contribution of GluN2A‐dominated NMDAR responses at human lamina I synapses compared with rodent synapses, suggesting a species difference relevant to NMDAR subunit‐targeting therapeutic approaches. The conserved heterogeneity in decay rates of excitatory synaptic events within individual lamina I pain‐processing neurons may enable synapse‐specific forms of plasticity and sensory integration within dorsal horn nociceptive networks. Key points Synaptic NMDA receptors (NMDARs) in spinal dorsal horn nociceptive neurons are key regulators of pain processing, but it is unknown whether their functional properties are conserved between males and females or translate from rodents to humans. In this study, we compared individual excitatory synaptic responses from lamina I pain‐processing neurons of male and female adult Sprague–Dawley rats and human organ donors. Individual lamina I neurons from male and female rats and humans contain AMPA receptor‐only as well as GluN2A, GluN2B‐ and GluN2D‐NMDAR‐dominated synaptic events. This may enable synapse‐specific forms of plasticity and sensory integration within dorsal horn nociceptive networks. Human lamina I synapses have an increased relative contribution of GluN2A‐dominated NMDAR responses compared with rodent synapses. These results uncover a species difference relevant to NMDAR subunit‐targeting therapeutic approaches.
机译:摘要 兴奋性谷氨酸能 NMDA 受体 (NMDARs) 是脊髓疼痛处理的关键调节因子,但 NMDARs 在背角伤害性神经元中的生物物理特性仍然知之甚少。尽管具有临床意义,但尚不清楚突触 NMDAR 反应的分子和功能特性在雄性和雌性之间是保守的,还是从啮齿动物转化为人类。为了解决这些翻译差距,我们系统地比较了成年 Sprague-Dawley 大鼠和人类器官供体(包括两性)的 I 层疼痛加工神经元的个体和平均兴奋性突触反应。通过将向外的微型兴奋性突触后电流的膜片钳记录与无偏倚数据分析相结合,我们发现了单个 I 层神经元内兴奋性突触事件的广泛衰减常数。突触反应的衰减常数分布在 1-20?ms 到大于 1000?ms 的连续体中,表明单个层 I 神经元仅包含 AMPA 受体 (AMPAR) 以及 GluN2A-、GluN2B-和 GluN2D-NMDAR 主导的突触事件。在 AMPAR 和 NMDAR 介导的衰变动力学中观察到这种神经元内异质性在性别和物种中观察到。然而,我们发现与啮齿动物突触相比,GluN2A 主导的 NMDAR 反应在人 I 层突触中的相对贡献增加,这表明与 NMDAR 亚基靶向治疗方法相关的物种差异。单个 I 层疼痛处理神经元内兴奋性突触事件衰减率的保守异质性可能使背角伤害网络内的突触特异性可塑性和感觉统合形式成为可能。关键点脊髓背角伤害性神经元中的突触 NMDA 受体 (NMDAR) 是疼痛处理的关键调节因子,但尚不清楚它们的功能特性在雄性和雌性之间是保守的,还是从啮齿动物转化为人类。在这项研究中,我们比较了雄性和雌性成年 Sprague-Dawley 大鼠和人类器官供体的 I 层疼痛加工神经元的个体兴奋性突触反应。来自雄性和雌性大鼠和人类的单个 I 层神经元仅包含 AMPA 受体以及 GluN2A、GluN2B 和 GluN2D-NMDAR 主导的突触事件。这可能在背角伤害性网络中实现突触特异性形式的可塑性和感觉统合。与啮齿动物突触相比,人层 I 突触对 GluN2A 主导的 NMDAR 反应的相对贡献增加。这些结果揭示了与 NMDAR 亚基靶向治疗方法相关的物种差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号