首页> 外文期刊>Journal of Semiconductors >A review on SRAM-based computing in-memory: Circuits, functions, and applications
【24h】

A review on SRAM-based computing in-memory: Circuits, functions, and applications

机译:基于 SRAM 的内存计算综述:电路、函数和应用

获取原文
获取原文并翻译 | 示例

摘要

Artificial intelligence (AI) processes data-centric applications with minimal effort. However, it poses new challenges to system design in terms of computational speed and energy efficiency. The traditional von Neumann architecture cannot meet the requirements of heavily data-centric applications due to the separation of computation and storage. The emergence of computing in-memory (CIM) is significant in circumventing the von Neumann bottleneck. A commercialized memory architecture, static random-access memory (SRAM), is fast and robust, consumes less power, and is compatible with state-of-the-art technology. This study investigates the research progress of SRAM-based CIM technology in three levels: circuit, function, and application. It also outlines the problems, challenges, and prospects of SRAM-based CIM macros.
机译:人工智能 (AI) 以最少的工作量处理以数据为中心的应用程序。然而,它在计算速度和能效方面对系统设计提出了新的挑战。由于计算和存储分离,传统的 von Neumann 架构无法满足高度以数据为中心的应用程序的要求。内存计算 (CIM) 的出现对于规避 von Neumann 瓶颈具有重要意义。静态随机存取存储器 (SRAM) 是一种商用存储器架构,快速而强大,功耗更低,并且与最先进的技术兼容。本研究从电路、功能和应用三个层面探讨了基于 SRAM 的 CIM 技术的研究进展。它还概述了基于 SRAM 的 CIM 宏的问题、挑战和前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号