首页> 外文期刊>IEEE Transactions on Industrial Electronics >Optimal Weighting Factor Design of Finite Control Set Model Predictive Control Based on Multiobjective Ant Colony Optimization
【24h】

Optimal Weighting Factor Design of Finite Control Set Model Predictive Control Based on Multiobjective Ant Colony Optimization

机译:基于多目标蚁群优化的有限控制集模型预测控制最优加权因子设计

获取原文
获取原文并翻译 | 示例

摘要

In this article, an improved multiobjective ant colony optimization (ACO) algorithm is proposed to design the weighting factors (WFs) in the model predictive control of power converters. First, the principle of the multiobjective ACO algorithm is introduced. Then, the WF design process based on the multiobjective ACO algorithm is given in both the single-function mode and the Pareto mode. Finally, improvement measures are proposed for the multiobjective ACO algorithm to reduce the calculation and accelerate the convergence. Simulations and experiments are carried out on a parallel three-level dc#x2013;dc converter. The results show that the proposed method is faster and less-computational than the traditional ACO algorithm, and is more accurate than the particle swarm optimization algorithm. With the proposed method, higher solution diversity and smaller control error can be achieved. In addition, the proposed method can also be used for WF online tuning, which will bring more benefits when the converter parameters are mismatched.
机译:在本文中,提出了一种改进的多目标蚁群优化 (ACO) 算法来设计功率变换器模型预测控制中的加权因子 (WFs)。首先,介绍了多目标 ACO 算法的原理。然后,在单函数模式和 Pareto 模式下给出了基于多目标 ACO 算法的 WF 设计过程。最后,针对多目标 ACO 算法提出了改进措施,以减少计算并加速收敛。仿真和实验在并联三电平 DC-DC 转换器上进行。结果表明,所提方法比传统的ACO算法更快、计算量更少,并且比粒子群优化算法更准确。使用所提出的方法,可以实现更高的解多样性和更小的控制误差。此外,所提出的方法还可以用于 WF 在线调谐,当转换器参数不匹配时,将带来更多的好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号