首页> 外文期刊>Expert systems: The international journal of knowledge engineering >New bag of features using reinforcement Aquila optimization and weighted Bayesian Gaussian mixture modelling for dental images
【24h】

New bag of features using reinforcement Aquila optimization and weighted Bayesian Gaussian mixture modelling for dental images

机译:使用增强 Aquila 优化和加权贝叶斯高斯混合建模进行牙科图像的新特征包

获取原文
获取原文并翻译 | 示例

摘要

Dentistry diseases are worldwide concern with the fact that 5 of medical budget isspent on it. Dental diagnosis requires frequent visits to clinic and multiple personalcheck-ups by an expert. This delays the process of diagnosis as well as introduces thedanger of oral infection spread. Automation is boon to speed up the process of diagnosis,reduce expert's involvement and help in handling volume of patients. In situationslike pandemic as seen in this decade, computer based automatic systems inhealth have proven their importance and necessity. For dental diagnosis, images areuseful tool for better anatomical views and accurate decision of treatment. However,manual dental analysis increases load on dentists for initial check-up that can be easilyperformed with automated systems or self-kits. Oral cavity is a dental illness, ifnot identified and treated on time may lead to other serious ailments. This work presentsa framework that performs tooth image classification for cavity and non-cavitywith new bag of features (NBoF) method. NBoF method is an attempt to improvethe performance of bag of features (BoF) using the proposed reinforcement Aquilaoptimization (RAO) and weighted Bayesian Gaussian mixture modelling (WBGMM).An analysis of the performance of the NBoF using the proposed RAO and WBGMMis conducted using standard metrics. The comparative study of results proves thatthe proposed NBoF method outperforms the existing state-of-the-art algorithms.
机译:牙科疾病是全世界关注的问题,因为 5% 的医疗预算都花在了它上面。牙科诊断需要经常去诊所和专家进行多次个人检查。这延迟了诊断过程,并引入了口腔感染传播的危险。自动化有助于加快诊断过程,减少专家的参与,并有助于处理患者的数量。在这十年中出现的大流行等情况下,基于计算机的自动健康系统已经证明了它们的重要性和必要性。对于牙科诊断,图像是更好的解剖视图和准确治疗决策的有用工具。然而,手动牙科分析增加了牙医进行初始检查的负担,而这些检查可以通过自动化系统或自助套件轻松进行。口腔是一种牙齿疾病,如果不及时发现和治疗可能会导致其他严重的疾病。这项工作提出了一个框架,该框架使用新特征袋 (NBoF) 方法对蛀牙和非蛀牙进行牙齿图像分类。NBoF 方法是一种尝试使用拟议的增强 Aquilaoptimization (RAO) 和加权贝叶斯高斯混合建模 (WBGMM) 来提高特征袋 (BoF) 的性能。使用拟议的 RAO 和 WBGMMs 对 NBoF 的性能进行分析是使用标准指标进行的。结果的比较研究证明,所提出的 NBoF 方法优于现有的最先进算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号