首页> 外文期刊>Optical and quantum electronics >Additional investigation of the Biswas-Arshed equation to reveal optical soliton dynamics in birefringent fiber
【24h】

Additional investigation of the Biswas-Arshed equation to reveal optical soliton dynamics in birefringent fiber

机译:对 Biswas-Arshed 方程的额外研究以揭示双折射光纤中的光学孤子动力学

获取原文
获取原文并翻译 | 示例

摘要

This study explores optical solitons in the Biswas–Arshed equation within birefringent fibers.Employing the unified solver method, the (1/(φ(η)),(φ'(η))/(φ(η))) method, and new Kudryashov’s method, we extract various optical soliton solutions, encompassing dark, singular, bright,and periodic forms. These solutions deepen our understanding of dynamic phenomena inbirefringent fibers, showcasing their potential practical applications. The results, effectivelyvisualized in 3D and 2D plots, reveal intricate patterns. Our research underscores the efficacyand simplicity of these approaches in obtaining optical solitons for diverse nonlinearevolution equations. The novelty lies in the advanced methodologies applied to investigatethe Biswas–Arshed equation, yielding a diverse array of soliton solutions and their practicalimplications. This study not only presents a variety of solutions but also highlights theirapplicability across disciplines and real-world scenarios. Consequently, our research significantlycontributes to advancing our understanding of optical solitons in birefringent fibers,offering a methodological breakthrough in engineering and applied physics.
机译:本研究探讨了双折射光纤中 Biswas-Arshed 方程中的光学孤子。采用统一求解器方法、(1/(φ(η))、(φ'(η))/(φ(η))) 方法和新的 Kudryashov 方法,我们提取了各种光学孤子解,包括暗、奇异、亮和周期性形式。这些解决方案加深了我们对互折光纤动态现象的理解,展示了它们的潜在实际应用。结果在 3D 和 2D 绘图中有效可视化,揭示了复杂的模式。我们的研究强调了这些方法在获得各种非线性进化方程的光学孤子方面的有效性和简单性。新颖之处在于应用于研究 Biswas-Arshed 方程的先进方法,产生了各种各样的孤子解及其实际意义。本研究不仅提出了各种解决方案,还强调了它们在学科和实际场景中的适用性。因此,我们的研究为促进我们对双折射光纤中光学孤子的理解做出了重大贡献,为工程和应用物理学提供了方法论上的突破。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号