首页> 外文期刊>IEEE sensors journal >Intelligent Nursing Bed for Autonomous Care Based on Low-Cost Resource-Constrained Microcontroller With On-Device Learning
【24h】

Intelligent Nursing Bed for Autonomous Care Based on Low-Cost Resource-Constrained Microcontroller With On-Device Learning

机译:基于低成本资源受限微控制器的自主护理智能护理床,具有设备端学习功能

获取原文
获取原文并翻译 | 示例

摘要

Due to the escalating worldwide aging problem, nursing beds (NBs), which are crucial amenities for supporting the everyday activities of the elderly and disabled, are being utilized in an expanding range of environments. To alleviate the nursing pressure on caregivers and maintain a positive health mindset for the users of NBs, enhance their self-esteem and confidence, article presents the design of an intelligent NB based on a low-cost resource-constrained microcontroller that enables users to achieve self-care. As the aggregation of sensor usage, the intelligent NB has been specifically designed with two man-machine interaction methods that are beneficial for self-care: speech recognition based on sound sensor and hand gesture recognition based on visual sensor. To perform hand gesture recognition inference on a microcontroller that has limited resources and is inexpensive, we developed a convolutional neural network-neural circuit policies (CNN-NCP) model specifically designed for on-device learning. This model has a small footprint, measuring just tens of kilobytes. Additionally, we created a special dataset consisting of hand gesture images to train and test the model. Experimental results demonstrate that the model achieves a hand gesture recognition accuracy of up to 96.65#x0025;. In addition, this article also discusses the selection, circuit design, and performance testing of the detection and monitoring sensors used in the NB. The realization of all functions of intelligent NB for autonomous care is based on a resource-constrained microcontroller, representing a beneficial and highly challenging endeavor in pursuit of low cost and high reliability.
机译:由于全球老龄化问题不断加剧,护理床 (NB) 作为支持老年人和残疾人日常活动的重要设施,正在被用于越来越多的环境中。为减轻照顾者的护理压力,保持健康的心态,提升使用者的自尊心和自信心,本文介绍了一种基于低成本资源受限微控制器的智能智能睡眠机器人的设计,使用户能够实现自我照顾。作为传感器使用的聚合体,智能 NB 专门设计了两种有益于自我护理的人机交互方式:基于声音传感器的语音识别和基于视觉传感器的手势识别。为了在资源有限且成本低廉的微控制器上执行手势识别推理,我们开发了一种专为设备端学习设计的卷积神经网络-神经电路策略 (CNN-NCP) 模型。此模型占用空间小,仅计数十 KB。此外,我们还创建了一个包含手势图像的特殊数据集来训练和测试模型。实验结果表明,该模型实现了高达 96.65% 的手势识别准确率。此外,本文还讨论了 NB 中使用的检测和监控传感器的选型、电路设计和性能测试。用于自主护理的智能 NB 的所有功能的实现都基于资源受限的微控制器,代表了追求低成本和高可靠性的有益且极具挑战性的努力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号