首页> 外文期刊>Transportation research, Part E. Logistics and transportation review >Battery swapping, vehicle rebalancing, and staff routing for electric scooter sharing systems
【24h】

Battery swapping, vehicle rebalancing, and staff routing for electric scooter sharing systems

机译:电动滑板车共享系统的电池更换、车辆再平衡和员工路线

获取原文
获取原文并翻译 | 示例

摘要

? 2024 Elsevier LtdElectric scooter (e-scooter) sharing systems provide on-demand electric scooter rental services. E-scooters are equipped with swappable batteries managed by staff who visit each scooter and replace depleted batteries with charged ones. The e-scooters in this system are free-floating; they can be located anywhere without having to be returned to designated stations. Due to this characteristic of the scattered location of e-scooters, operation decisions with associated staff routing are more challenging than station-based services. Thus, it is critical to implement the efficient management of e-scooter redistribution and charging decisions with proper staff routing to successfully prepare for user demand within a limited operation time while minimizing the total operating cost. To this end, we introduce a battery swapping and vehicle rebalancing problem with staff routing for e-scooter sharing systems, formulated as a mixed integer programming (MIP) model. To derive solutions efficiently for a large-scale instance in practice, we propose a clustered iterative construction approach where the problem is decomposed into two phases. The first phase clusters regions using an approximation of intra-region and inter-region operation costs with the minimum spanning tree approach. The second phase efficiently derives multiple candidate regional sequences by our partial permutation procedure and following the sequences, iteratively solves a significantly reduced size of the problem to construct operation assignments. Our numerical experiments on the generated instances and real-world instances demonstrate that the proposed two-phase algorithm shows significantly superior performance in practically large scale instances than the benchmarks without clustering or the iterative procedures of our algorithm.
机译:?2024 Elsevier Ltd电动滑板车 (e-scooter) 共享系统提供按需电动滑板车租赁服务。电动滑板车配备了可更换电池,由工作人员管理,他们访问每辆滑板车并用充电的电池更换耗尽的电池。该系统中的电动滑板车是自由浮动的;它们可以位于任何地方,而无需返回指定的站点。由于电动滑板车分散位置的这一特点,与基于站点的服务相比,具有相关人员路线的运营决策更具挑战性。因此,实施电动滑板车再分配和充电决策的有效管理以及适当的员工路线至关重要,以便在有限的运营时间内成功为用户需求做好准备,同时最大限度地降低总运营成本。为此,我们引入了电动滑板车共享系统的员工路线的电池更换和车辆再平衡问题,表述为混合整数规划 (MIP) 模型。为了在实践中有效地推导出大规模实例的解,我们提出了一种聚类迭代构造方法,其中问题被分解为两个阶段。第一阶段使用最小生成树方法对区域内和区域间运营成本的近似值对区域进行聚类。第二阶段通过我们的部分排列过程有效地推导出多个候选区域序列,并遵循这些序列,迭代解决显着减小的问题大小以构建操作分配。我们对生成的实例和真实世界的实例进行的数值实验表明,所提出的两阶段算法在实际大规模实例中表现出明显优于没有聚类或我们算法迭代过程的基准的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号