首页> 外文期刊>journal of theoretical and applied information technology >DEMENTIA RISK ASSESSMENT USING MACHINE LEARNING AND PART-OF-SPEECH TAGS
【24h】

DEMENTIA RISK ASSESSMENT USING MACHINE LEARNING AND PART-OF-SPEECH TAGS

机译:使用机器学习和词性标签进行痴呆症风险评估

获取原文

摘要

© 2023 Little Lion Scientific.Dementia, a set of cognitive decline syndromes distinct from typical age-related degeneration, poses a significant public health challenge. The key to dementia detection lies in analyzing sentence structure and conversational style, particularly in speech. This study focuses on creating and evaluating a machine learning model for non-invasive early dementia detection through speech parameter analysis in everyday conversation. Leveraging the DementiaBank dataset, comprising over 500 voice transcripts from individuals aged 60 and older, the study employs 63 tagged Part-of-Speech (PoS) parameters extracted from chat transcripts. Data from 244 control subjects and 306 dementia patients are used. Machine learning methods, including Random Forest, Deep Neural Network, and Support Vector Machine, achieve respective accuracy rates of 83, 92, and 84. These results underscore the effectiveness of informatics-based machine learning in non-invasive dementia detection using PoS tags. Additionally, the study provides insights into the relative importance of each PoS tag in dementia detection. This research contributes to the growing informatics field of dementia detection and supports the development of less intrusive diagnostic tools.
机译:© 2023 Little Lion Scientific.痴呆症是一组不同于典型年龄相关退化症的认知能力下降综合征,对公共卫生构成了重大挑战。痴呆症检测的关键在于分析句子结构和会话风格,尤其是言语。本研究的重点是通过日常对话中的语音参数分析来创建和评估用于非侵入性早期痴呆检测的机器学习模型。利用 DementiaBank 数据集,包括来自 60 岁及以上个体的 500 多个语音记录,该研究采用了从聊天记录中提取的 63 个标记词性 (PoS) 参数。使用了来自 244 名对照受试者和 306 名痴呆患者的数据。机器学习方法包括随机森林、深度神经网络和支持向量机,分别实现了 83%、92% 和 84% 的准确率。这些结果强调了基于信息学的机器学习在使用 PoS 标签进行非侵入性痴呆检测方面的有效性。此外,该研究还深入了解了每个 PoS 标签在痴呆检测中的相对重要性。这项研究有助于不断发展的痴呆症检测信息学领域,并支持侵入性较小的诊断工具的开发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号