首页> 外文期刊>ecology and evolution >INTRAGRO: A machine learning approach to predict future growth of trees under climate change
【24h】

INTRAGRO: A machine learning approach to predict future growth of trees under climate change

机译:INTRAGRO:一种机器学习方法,用于预测气候变化下树木的未来生长

获取原文
获取原文并翻译 | 示例

摘要

The escalating impact of climate change on global terrestrial ecosystems demands a robust prediction of the trees' growth patterns and physiological adaptation for sustainable forestry and successful conservation efforts. Understanding these dynamics at an intra-annual resolution can offer deeper insights into tree responses under various future climate scenarios. However, the existing approaches to infer cambial or leaf phenological change are mainly focused on certain climatic zones (such as higher latitudes) or species with foliage discolouration during the fall season. In this study, we demonstrated a novel approach (INTRAGRO) to combine intra-annual circumference records generated by dendrometers coupled to the output of climate models to predict future tree growth at intra-annual resolution using a series of supervised and unsupervised machine learning algorithms. INTRAGRO performed well using our dataset, that is dendrometer data of P. roxburghii Sarg. from the subtropical mid-elevation belt of Nepal, with robust test statistics. Our growth prediction shows enhanced tree growth at our study site for the middle and end of the 21st century. This result is remarkable since the predicted growing season by INTRAGRO is expected to shorten due to changes in seasonal precipitation. INTRAGRO's key advantage is the opportunity to analyse changes in trees' intra-annual growth dynamics on a global scale, regardless of the investigated tree species, regional climate and geographical conditions. Such information is important to assess tree species' growth performance and physiological adaptation to growing season change under different climate scenarios.
机译:气候变化对全球陆地生态系统的影响不断升级,需要对树木的生长模式和生理适应进行强有力的预测,以实现可持续林业和成功的保护工作。在年度内决议中了解这些动态可以更深入地了解未来各种气候情景下树木的反应。然而,现有的推断形成层或叶片物候变化的方法主要集中在某些气候带(如高纬度地区)或秋季叶片变色的物种上。在这项研究中,我们展示了一种新方法(INTRAGRO),该方法将树木计生成的年内周长记录与气候模型的输出相结合,使用一系列有监督和无监督的机器学习算法以年内分辨率预测未来的树木生长。INTRAGRO使用我们的数据集(即P. roxburghii Sarg的树木计数据)表现良好。来自尼泊尔的亚热带中海拔带,具有强大的测试统计数据。我们的生长预测显示,在21世纪中叶和末期,我们的研究地点的树木生长增强。这一结果是显著的,因为由于季节性降水的变化,INTRAGRO预测的生长季节预计将缩短。INTRAGRO的主要优势是有机会在全球范围内分析树木年内生长动态的变化,而不受所调查的树种、区域气候和地理条件的影响。这些信息对于评估树种在不同气候情景下的生长表现和对生长季节变化的生理适应具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号