首页> 外文期刊>Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies >A cross-domain intelligent fault diagnosis method based on deep subdomain adaptation for few-shot fault diagnosis
【24h】

A cross-domain intelligent fault diagnosis method based on deep subdomain adaptation for few-shot fault diagnosis

机译:一种基于深度子域自适应的跨域智能故障诊断方法,用于小样本故障诊断

获取原文
获取原文并翻译 | 示例

摘要

Most existing cross-domain intelligent fault diagnosis algorithms rely on many samples and only consider the global alignment of all faults. It is not practical to obtain numerous fault samples under actual working conditions. Therefore, it is a great challenge to fully utilize the fine-grained information of each type of fault to improve the fault diagnosis performance of the model under few-shot conditions. To ease this challenge, we develop a novel deep subdomain adaptation intelligent fault diagnosis (DSAIFD) model. First, a convolutional neural network is pretrained using the source domain to extract cross-domain invariant features. Second, we propose an effective class center alignment method to facilitate deep subdomain adaptation, which improves the fault diagnosis performance of the model. By combining the class center alignment method with conditional adversarial networks, the proposed model can fully utilize the fine-grained information of subclasses and reduce the distribution discrepancy between two domains. Last, high-confidence samples are selected from the target domain by setting an adaptive threshold. These selected samples are combined with the training samples from the source domain to train a classifier, which alleviates the problem of insufficient sample size. The experiments show that DSAIFD achieves significant results on two validation datasets.
机译:现有的大多数跨域智能故障诊断算法依赖于许多样本,并且只考虑所有故障的全局对齐。在实际工况下获取大量故障样本是不切实际的。因此,充分利用各类型故障的细粒度信息,提高模型在少样本条件下的故障诊断性能是一个很大的挑战。为了缓解这一挑战,我们开发了一种新型的深度子域自适应智能故障诊断(DSAIFD)模型。首先,使用源域对卷积神经网络进行预训练,以提取跨域不变特征。其次,提出了一种有效的类中心对齐方法,促进了深度子域自适应,提高了模型的故障诊断性能。通过将类中心对齐方法与条件对抗网络相结合,所提模型能够充分利用子类的细粒度信息,减少两个域之间的分布差异。最后,通过设置自适应阈值从目标域中选择高置信度样本。这些选定的样本与源域中的训练样本相结合,以训练分类器,从而缓解样本量不足的问题。实验表明,DSAIFD在两个验证数据集上取得了显著的成果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号