...
首页> 外文期刊>RSC Advances >Continuous electron transport pathways constructed in TiO2 sub-microsphere films for high-performance dye-sensitized solar cells
【24h】

Continuous electron transport pathways constructed in TiO2 sub-microsphere films for high-performance dye-sensitized solar cells

机译:TiO2亚微球薄膜中构建的连续电子传输路径,用于高性能染料敏化太阳能电池

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

TiO2 sub-microspheres applied as photoanodes in dye-sensitized solar cells (DSSCs) have been reported to have dual functions with high specific surface areas and light scattering capabilities. Large voids are left in the sub-microsphere film and lead to the poor connectivity between the neighboring sub-microspheres, which will limit the enhancement of the short-circuit current density (J(SC)) and the power conversion efficiency (h). Herein, we develop a closely linked network by introducing TiO2 nanocrystallines into the voids to construct a continuous electron transport pathway. It is found that pore sizes, porosity, and specific surface area could be effectively tuned by simply adjusting the content of TiO2 nanocrystallines. As confirmed by the intensity-modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS) and electrochemical impedance spectra (EIS), when the content of TiO2 nanocrystallines in the sub-microspheres is 10 wt% (NP10), the electron transport time, electron collection efficiency, and electron diffusion length are optimized compared with the other contents. As a result, the eta of the optimized NP10 photoanode based DSSC is up to 11.22%, which is higher than the 10.58% efficiency demonstrated by the pure sub-microsphere photoanode based cell.
机译:据报道,在染料敏化太阳能电池(DSSC)中用作光阳极的TiO2亚微球具有双重功能,具有高比表面积和光散射能力。亚微球膜中会留有大量空隙,导致相邻亚微球之间的连通性较差,这将限制短路电流密度(J(SC))和功率转换效率(h)的提高。在本文中,我们通过将TiO2纳米晶体引入空隙以构建连续的电子传输路径,从而开发了紧密联系的网络。发现通过简单地调节TiO 2纳米晶体的含量可以有效地调节孔径,孔隙率和比表面积。强度调制的光电流/光电压谱(IMPS / IMVS)和电化学阻抗谱(EIS)证实,当亚微球中TiO2纳米晶体的含量为10 wt%(NP10)时,电子传输时间,电子收集与其他内容相比,效率和电子扩散长度得到了优化。结果,基于优化的NP10光电阳极的DSSC的eta值高达11.22%,高于基于纯亚微球光电阳极的电池展示的10.58%的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号