首页> 外文期刊>Reviews in mineralogy and geochemistry >The Legacy of Arsenic Contamination from Mining and Processing Refractory Gold Ore at Giant Mine, Yellowknife, Northwest Territories, Canada
【24h】

The Legacy of Arsenic Contamination from Mining and Processing Refractory Gold Ore at Giant Mine, Yellowknife, Northwest Territories, Canada

机译:加拿大西北地区耶洛奈夫巨型矿山开采和加工难处理金矿石中砷污染的遗产

获取原文
获取原文并翻译 | 示例

摘要

The case of the Giant mine illustrates how a large, long-lived Au mine has resulted in a complex regional legacy of As contamination and an estimated remediation cost of almost one billion Canadian dollars (AANDC 2012). The mine, located a few km north of the city of Yellowknife on the shore of Great Slave Lake (Figs. 1, 2) produced more than 7 million troy ounces of Au (approximately 220 tonnes) from a largely underground operation. Giant mine was the largest producer in the Yellowknife greenstone belt, which produced more than 12 million troy ounces (-370 tonnes) in total (Bullen and Robb 2006). Arsenopyrite-bearing Au ore was roasted from 1949 to 1999 as a pretreatment for cyanidation (Fig. 3a). Poor or nonexistent emission controls in the early years resulted in the release of an estimated 20,000 tonnes of roaster-generated As_2O_3 to the surrounding environment through stack emissions (CPHA 1977; Wrye 2008). Over the lifetime of the mine, however, most of the As_2O_3 (237,000 tonnes) was stored in underground chambers (Fig. 3b) and is a now an ongoing source of As to groundwater and surface water (INAC 2007; Jamieson et al. 2013). Other roaster products include As-bearing maghemite and hematite (calcine) were deposited with tailings and re-mobilized into creek and lake sediments. Under reducing conditions, post-depositional remobilization of As associated with roaster-generated Fe oxides results in release of As to sediment pore water and reprecipitation of some As as a sulfide phase (Fawcett and Jamieson 2011). However, As(III) in maghemite and As_2O_3 persists in the oxidizing conditions of near-surface tailings and soils (Walker et al. 2005; Jamieson et al. 2013).
机译:巨人矿山的案例表明,一个大型,寿命长的金矿山如何导致复杂的区域性砷污染遗产,估计整治成本近10亿加元(AANDC 2012)。该矿位于大奴湖沿岸的耶洛奈夫市以北数公里处(图1、2),主要是通过地下作业生产了700万金衡盎司的金(约220吨)。巨型矿山是耶洛奈夫绿岩带最大的生产商,该矿带总共生产了超过1200万金衡盎司(-370吨)(Bullen and Robb 2006)。含砷黄铁矿的金矿石于1949年至1999年进行了焙烧,作为氰化的预处理方法(图3a)。早期的排放控制不力或根本不存在,导致通过烟囱排放向周围环境释放了约20,000吨由焙烧炉产生的As_2O_3(CPHA 1977; Wrye 2008)。然而,在矿山的整个生命周期中,大部分的As_2O_3(237,000吨)都存储在地下室中(图3b),并且现在是地下水和地表水砷的持续来源(INAC 2007; Jamieson等人,2013)。 )。其他焙烧炉产品包括含砷的磁赤铁矿和赤铁矿(calc石)以及尾矿,然后再转移到小河和湖泊沉积物中。在还原条件下,与焙烧炉生成的铁氧化物相关的砷的沉积后迁移会导致砷释放到沉积物孔隙水中,并使一些砷以硫化物相再沉淀(Fawcett和Jamieson 2011)。然而,磁赤铁矿中的As(III)和As_2O_3在近地表尾矿和土壤的氧化条件下仍然存在(Walker等,2005; Jamieson等,2013)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号